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Abstract: We discuss two ways in which one can study two-charge supertubes as compo-

nents of generic three-charge, three-dipole charge supergravity solutions. The first is using

the Born-Infeld action of the supertubes, and the second is via the complete supergravity

solution. Even though the Born-Infeld description is only a probe approximation, we find

that it gives exactly the same essential physics as the complete supergravity solution. Since

supertubes can depend on arbitrary functions, our analysis strengthens the evidence for the

existence of three-charge black-hole microstate geometries that depend on an infinite set

of parameters, and sets the stage for the computation of the entropy of these backgrounds.

We examine numerous other aspects of supertubes in three-charge, three-dipole charge su-

pergravity backgrounds, including chronology protection during mergers, the contribution

of supertubes to the charges and angular momenta, and the enhancement of their entropy.

In particular, we find that entropy enhancement affects supertube fluctuations both along

the internal and the spacetime directions, and we prove that the charges that give the

enhanced entropy can be much larger than the asymptotic charges of the solution. We also

re-examine the embedding of five-dimensional black rings in Taub-NUT, and show that

in different coordinate patches a ring can correspond to different four-dimensional black

holes. Last, but not least, we show that all the three-charge black hole microstate geome-

tries constructed so far can be embedded in AdS3 ×S3, and hence can be related to states

of the D1-D5 CFT.
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1 Introduction

The physics of two-charge supertubes is an essential ingredient in understanding the mi-

crostates of the D1-D5 system. Indeed, supergravity solutions for two charge supertubes

with D1 and D5 charges and KKM dipole charge are smooth in six dimensions and can

have arbitrary shape. Hence, they have an infinite dimensional classical moduli space,

which, upon quantization, gives the entropy one expects from counting at weak-coupling:

S = 2π
√

2N1N5 [1–7].

While this entropy is considerable, it is nowhere near the entropy of a black hole

with three charges: S = 2π
√
N1N5NP [8]. Hence, if one’s goal is to prove that in the

regime of parameters where the classical black hole exists one can find a very large number

of string/supergravity configurations that realize enough microstates to account for the

Bekenstein-Hawking entropy of this black hole [9–12], the entropy coming from two-charge

supertubes does not appear to be large enough.

However, it has recently been found that the humble two-charge supertube has more

to it than meets the eye: In a scaling supergravity background with large magnetic dipole

fluxes it can undergo entropy enhancement [13]. That is, if one uses the Born-Infeld action

to compute the entropy of a probe two-charge supertube placed in a background with three

charges and three dipole charges, one finds that such a supertube can have an entropy that

is much larger than that of the same supertube in empty space. The magnetic dipole-dipole

interactions between the supertube and the background can greatly increase the capacity

of the supertube to store entropy. Hence, the interaction with the supergravity background

can enhance (or decrease) the entropy coming from the fluctuating shape of a supertube.

As yet, the fully back-reacted solution corresponding to a supertube of arbitrary shape

has not been constructed and so the entropy enhancement calculation has only been done in

a probe approximation. Nevertheless, in the absence of the fully back-reacted solutions, one

can still pose a very sharp question, whose answer can tilt the balance one way or another

in the quest to understand whether the black hole is a thermodynamic description of a

very large number of horizonless microstates: “Do two-charge supertubes that are solutions

of the Born-Infeld equations of motion correspond to smooth solutions of supergravity once

the back-reaction is included?”

If the answer to this question is yes, then all the supertube microstates that were

counted in [13] give smooth microstate solutions of supergravity, valid in the same regime

of parameters where the classical black hole exists. Since the Born-Infeld counting might

give a macroscopic (black-hole-like) entropy, this would imply that the same entropy could

come from smooth supergravity solutions. Our goal in this paper is to show that the

Born-Infeld description of a supertube does indeed capture all the essential physics of the

– 1 –
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complete supergravity solution and argue that the corresponding supergravity solution will

be smooth in the D1-D5 duality frame.

First, we establish that when one has both a Born-Infeld and a supergravity description

of supertubes in a three-charge, three-dipole-charge background, the two descriptions agree

to the last detail. As we will see, this agreement can be rather subtle. For example, a

supertube that is merging with a black ring appears to merge at an angle that depends

on its charges but when this merger is described in supergravity, the merger appears to be

angle-independent. The resolution of this rests upon the correct identification of constituent

charges and the fact that such charges can depend upon “large” gauge transformations.

Another important fact we establish is that the solutions of the Born-Infeld action

are always such that the corresponding solutions of supergravity are smooth in the duality

frame where the supertube has D1 and D5 charges. Indeed, upon carefully relating the

Born-Infeld and the supergravity charges, we will find that the equations that insure that a

supertube is a solution of the Born-Infeld action are identical to the equations that insure

that the corresponding supergravity solution is smooth.

One could take the position that our analysis here only implies the smoothness of round

supertubes, which have both Born-Infeld and supergravity descriptions. It is possible that

the wiggly supertubes (which, upon entropy enhancement, might give a black-hole-like en-

tropy) could give rise to singular solutions when brought to the supergravity regime. While

such a possibility cannot be fully excluded before the construction of the fully back-reacted

wiggly supertubes, we have some rather strong reasons to believe it is highly unlikely. In-

deed, if one investigates the conditions for smoothness of the supergravity solution and

compares them to the Born-Infeld conditions, one finds that both the supergravity con-

ditions and the Born-Infeld conditions are local. Hence, since any curve can be locally

approximated as flat, our analysis indicates that no local properties of wiggly supertubes

(like the absence of regions of high curvature) will differ from the local properties of round

or flat supertubes. Thus one has a very reasonable expectation that supertubes of arbitrary

shape will source smooth supergravity solutions.

In particular, if one considers supertubes of arbitrary shape in flat space, the solutions

of the Born-Infeld action always give smooth supergravity solutions [4, 5]. If one now

considers a three-charge, three-dipole charge solution containing supertubes whose wiggling

scale is much smaller than the variation scale of the gauge fields of the background, one

can perform a gauge transformation that locally removes the gauge fields and transforms

a portion of this supertube into a portion with many wiggles of a supertube in flat space.

Since the latter supertube is smooth, and since gauge transformations do not affect the

smoothness of solutions, this implies that the original wiggly supertube is also giving a

smooth solution.

Obviously the foregoing conclusion is restricted to the domain of validity of supergrav-

ity. If a supertube of arbitrary shape is very choppy, the local curvature will be roughly

proportional to the inverse of the scale of the choppiness, and hence if the choppiness is

Planck-sized then the curvature of the solution will also be Planck-sized. Such solutions

are thus outside the domain of validity of supergravity. The main conclusion of our analy-

sis is that supertubes whose wiggles are not Planck-sized will give smooth, low-curvature

supergravity solutions.

– 2 –
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Our analysis does not establish whether the typical microstates of a certain black hole

will have high curvature or will be well described in supergravity. However, it does establish

that if the wiggles of the Born-Infeld supertubes that gave the typical microstates are not

Planck-sized, the corresponding supergravity solutions will not be either.

The second aim of this paper is to clarify several issues related to embedding of black

rings in Taub-NUT, and to the relation between the electric charges of the ring and those

of the corresponding four-dimensional black holes. We show that when embedding a black

ring solution in Taub-NUT one needs to use at least two coordinate patches. From the

perspective of one patch, the electric charges are the ones found in [14], and the ring

“angular” momentum along the Taub-NUT fiber (corresponding to the D0 charge in four

dimensions) is given by the difference of the two five-dimensional angular momenta. The

entropy is given by the E7(7) quartic invariant of these charges [15], as common for four-

dimensional BPS black holes [16].

From the perspective of the other patch, the charges and the Kaluza-Klein angular

momentum of the corresponding four-dimensional black hole are shifted, to certain values

that have no obvious five-dimensional interpretation.1 The entropy of the black ring is

again given by the E7(7) quartic invariant, but now as a function of the shifted charges.

The two four-dimensional black holes corresponding to the black ring are related by a gauge

transformation, which shifts the Dirac string in the gauge potentials from one side of the

ring to another.2

A third result in this paper is to verify chronology protection when supertubes and

black rings are merged. While chronology protection is expected to be valid for this merger,

the way it works is subtle. We compute the merger condition between a supertube and a

black ring, and find that this condition depends on the position on the S2 of the black ring

where the supertube merges. We also find that neither very large nor very small supertubes

can merge with the ring, for obvious reasons. If one varies the charge of the supertubes we

find that mergers happen when the charge lies in a certain interval: At one extreme the

supertube barely merges on the exterior of the ring while at the other it barely merges on

the interior of the ring.

We also discuss a subtlety in identifying the constituent charges carried into the black

ring by a merging supertube. We find that when the S1 of the supertube curves around the

S2 of the black ring horizon, the charge brought in by a given supertube must depend on the

S2 azimuthal angle at which the supertube merges with the ring. Otherwise chronology

is not protected. It would be most interesting to see how this comes about in the full

supergravity merger solution.

The fourth aim of this paper is to present in detail, and to extend, the entropy enhance-

ment calculation of [13]. Our analysis establishes that supertube entropy enhancement can

come from supertube oscillation modes in both the internal space of the solution (T 4 in

1The asymptotic five-dimensional electric charge is the average between the four-dimensional electric

charges in the two patches.
2Note that we can also perform a gauge transformation that shifts the four-dimensional electric charges

to the asymptotic five-dimensional charges of the black ring [17]. The corresponding four-dimensional

solution has two Dirac strings in the gauge potentials
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our calculations) and from oscillations of supertubes in the transverse spacetime directions.

We analyze entropy enhancement in black-ring backgrounds, in which the detailed com-

putation is more straightforward than in generic solutions with a Gibbons-Hawking base.

We find that, despite the presence of different (large) factors in the mode expansions, the

fluctuations in the plane transverse to the ring give a contribution to the entropy that is

identical to that coming from the fluctuations along the compactification torus.

If, as we expect, the enhanced entropy coming from these fluctuations will be black-

hole-like, and therefore the fluctuating supertubes will give the typical microstates of the

corresponding black hole, our analysis establishes that these microstates will have a non-

trivial transverse size. We believe it important to calculate the amount of entropy enhance-

ment coming from all the oscillations of the supertube. If the other transverse oscillations

are more entropic than the torus ones, this would suggest that five-dimensional supergrav-

ity may be enough to capture the typical states of the black hole. On the other hand,

if the torus and the transverse fluctuations are equally entropic (as hinted by our partial

analysis), the typical states will probably have a curvature set by the compactification

scale. Even if this scale is at the Planck scale, the microstate geometries constructed in su-

pergravity will give a pretty good approximation of the rough features of the typical states

(like the size, the density profile, the multipole moments). Hence the smooth microstate

geometries will act as representatives of the typical black hole microstates [13, 18].

We begin in section 2 by presenting the general three-charge three-dipole-charge so-

lutions in various duality frames that will be used throughout the paper. In particular,

we give these solutions in the type IIA frame where the three charges correspond to D0

branes, D4 branes and F1 strings (the D0-D4-F1 frame), and in the type IIB duality frame

where the three charges correspond to D1 branes, D5 branes and momentum (the D1-D5-P

frame). We also obtain in these frames (for the first time to our knowledge) the exact form

of the RR potentials when the base of the solution is a Gibbons-Hawking metric.

In section 3 we explore the regularity of the supergravity solutions corresponding to

two-charge supertubes with D1 and D5 charges placed in three-charge three-dipole charge

solutions. We find two local conditions that insure the absence of singularities near the

supertube profile.

In section 4 we study probe two-charge supertubes in general three-charge solutions:

black holes, black rings, and bubbling solutions with a Gibbons-Hawking base. We present

a detailed analysis of two-charge and three-charge supertube probes in the background of

a supersymmetric three-charge black ring. We also relate the supergravity and Born-Infeld

charges of supertubes, and show that the supergravity smoothness conditions derived in

section 3 agree with the ones derived from the Born-Infeld action. In section 5 we study

mergers of the supertube with the black ring and discuss chronology protection and black

hole thermodynamics during these mergers.

Section 6 contains an in-depth derivation of the entropy coming from oscillations of su-

pertubes, illustrating the entropy enhancement mechanism presented in [13] for black rings,

and general solutions with a Gibbons-Hawking base. Section 7 is devoted to conclusions.

In appendix A we give the details of the T-duality transformations of three-charge

three-dipole charge solutions in various duality frames. We also show how to compute the

– 4 –
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RR potentials corresponding to these solutions in various duality frames. In appendix B we

take a decoupling limit for general three-charge three-dipole charge solutions in D1-D5-P

frame, which leads to an asymptotically AdS3 × S3 × T 4 geometry. This establishes that

all the black hole and black ring microstate solutions constructed so far are dual to states

of the D1-D5 CFT, and serves as a starting point for analyzing these microstates using

holographic anatomy in the context of the AdS3/CFT2 correspondence [19]. In appendix

C we compute the angular momentum of a supertube in several three-charge backgrounds

and in appendix D we give the units and conventions used throughout our calculations.

2 Review of three-charge solutions

2.1 Three-charge solutions in the M2-M2-M2 (M-theory) frame

Three-charge solutions with four supercharges are most simply written in the M-theory

duality frame in which the three charges are treated most symmetrically and correspond

to three types of M2 branes wrapping three T 2’s inside T 6 [20]. The metric is:

ds211 =− (Z1Z2Z3)
− 2

3 (dt + k)2 + (Z1Z2Z3)
1
3 ds24 (2.1)

+
(
Z2Z3Z

−2
1

) 1
3 (dx2

5 + dx2
6)+

(
Z1Z3Z

−2
2

) 1
3 (dx2

7 + dx2
8)+

(
Z1Z2Z

−2
3

) 1
3 (dx2

9 + dx2
10),

where ds24 is a four-dimensional hyper-Kähler metric [20–22].3 The solution has a non-

trivial three-form potential, sourced both by the M2 branes (electrically) and by the M5

dipole branes (magnetically):

A = A(1) ∧ dx5 ∧ dx6 +A(2) ∧ dx7 ∧ dx8 +A(3) ∧ dx9 ∧ dx10. (2.2)

The magnetic contributions can be separated from the electric ones by defining the “mag-

netic field strengths:”

Θ(I) ≡ dA(I) + d

(
(dt + k)

ZI

)
, I = 1, 2, 3. (2.3)

Finding supergravity solutions for this system then boils down to solving the following

system of BPS equations:4

Θ(I) = ⋆4Θ
(I) ,

∇2ZI =
1

2
CIJK ⋆4

(
Θ(J) ∧ Θ(K)

)
, (2.4)

dk + ⋆4dk = ZIΘ
I .

In these equations, ⋆4 is the Hodge dual in the four-dimensional base space, ds24, and

CIJK = |ǫIJK |. If the four-dimensional base manifold has a triholomorphic U(1) isometry

then the metric on the base can be put in a Gibbons-Hawking (GH) form [28, 29]:

ds24 = V −1
(
dψ +A)2 + V d~y · d~y , (2.5)

3This metric can have regions of signature +4 and signature −4 [23–27], and for this reason we usually

refer to it as ambipolar.
4These equations also give supersymmetric solutions when the T 6 is replaced by a Calabi-Yau three-fold,

and CIJK is replaced by the triple intersection numbers of this three-fold.

– 5 –
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where V is a harmonic function on the R
3 spanned by (y1, y2, y3) and ~∇× ~A = ~∇V . For

such metrics, the BPS equations (2.5) can be solved explicitly [14, 30]. The most general

solution can be written in terms of eight harmonic functions (V,KI , LI ,M) on the R
3 base

of the GH space.5 It is convenient to introduce the vielbeins:

ê1 = V − 1
2 (dψ +A) , êa+1 = V

1
2 dya , a = 1, 2, 3 , (2.6)

then one has

Θ(I) = −
3∑

a=1

(
∂a

(
V −1KI

)) (
ê1 ∧ êa+1 +

1

2
ǫabc ê

b+1 ∧ êc+1

)
. (2.7)

The three gauge fields, A(I), can be written as

A(I) = B(I) − 1

ZI
(dt + k) , (2.8)

where

B(I) = V −1KI (dψ +A) + ~ξ(I) · d~y , ~∇× ~ξ(I) ≡ −~∇KI . (2.9)

The functions ZI and the angular momentum one-form k are given by

ZI =
CIJK

2

KJKK

V
+ LI , k = µ(dψ +A) + ~ω · d~y , (2.10)

where

µ =
CIJK

6

KIKJKK

V 2
+
KILI

2V
+M (2.11)

and ~ω satisfies the equation

~∇× ~ω = V ~∇M −M~∇V +
1

2

(
KI ~∇LI − LI

~∇KI
)
. (2.12)

This solution can describe five-dimensional black holes, circular black rings and supertubes,

as well as smooth “bubbling solutions” and an arbitrary superposition of these objects.

Upon compactifying to four dimensions, all these reduce to BPS multi-center black-hole

configurations [35, 36] of the type first considered in [37].

The harmonic functions are usually chosen to be sourced by simple poles:

V = ǫ0 +

N∑

j=1

qj
rj
, KI = κI

0 +

N∑

j=1

kI
j

rj
,

LI = lI0 +
N∑

j=1

lIj
rj
, M = m0 +

N∑

j=1

mj

rj
,

(2.13)

where rj = |~y − ~yj| and N is the number of centers. We think of the residues of the

poles of these functions as defining the GH charges of the corresponding solution. As was

5For M-theory compactifications on a generic Calabi-Yau three-fold the number of harmonic functions

will be 2h1,1 + 2. See [34] for a discussion of such solutions.

– 6 –
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discussed in [38], gauge transformations and spectral flow can reshuffle these charges, but

this produces physically equivalent solutions.

A necessary (but not sufficient) condition for the solutions to be free of closed

timelike curves (CTC’s) is to satisfy the “integrability equations,” or “bubble equa-

tions,” [24, 25, 37]:

N∑

j=1,j 6=i

〈Q̂i|Q̂j〉
rij

= 2(ε0mi −m0qi) +
3∑

I=1

(
kI
0l

I
i − lI0k

I
i

)
(2.14)

where 〈Q̂i|Q̂j〉 is the symplectic product6 between the eight-vectors of charges at the points

i and j

〈Q̂i|Q̂j〉 ≡ 2(mjqi − qjmi) +

3∑

I=1

(
lIjk

I
i − kI

j l
I
i

)
. (2.15)

For smooth solutions with multiple GH centers the parameters of the solution must also

satisfy the additional regularity constraints:

lIj = −CIJK

2

kJ
j k

K
j

qj
, mj =

k1
j k

2
jk

3
j

2q2j
, (2.16)

These are required to cancel the singularities in ZI and µ and with these choices the

integrability equations (2.14) reduce to the bubble equations considered in [24, 25].

One can arrange for the global absence of CTC’s by requiring that there is a well-

defined, global time function [25]. This is much more stringent than the bubble equations

(which only eliminate CTC’s in the neighborhood of the GH points) and means that the

following inequality should be satisfied globally [24, 25]:

Z1Z2Z3V − µ2V 2 − |ω|2 ≥ 0 . (2.17)

This condition is very hard to check in general and usually has to be checked numerically

for particular solutions.

As we mentioned earlier, in order to study two-charge supertubes in backgrounds like

those presented here, it is useful to dualize to a frame in which the two-charge supertube

action is simple. One such frame is where the three electric charges correspond to D0

branes, D4 branes and F1 strings and the supertube carries D0 and F1 electric charges

and D2 dipole charge [1]. On the other hand, in order to study the supergravity solutions

describing supertubes in black-ring or bubbling backgrounds, it is useful to work in a

duality frame in which the supergravity solution for the supertubes is smooth. In this

frame the electric charges of the background correspond to D1 branes, D5 branes, and

momentum P, and the supertube carries D1 and D5 charges, with KKM dipole charge. We

therefore dualize the foregoing M-theory solution to these frames and give all the details

of the solutions explicitly.

6This product is sometimes called the Dirac-Schwinger-Zwanziger product.

– 7 –
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2.2 Three-charge solutions in the D0-D4-F1 duality frame

Here we will present the three-charge solutions in the duality frame in which they have

electric charges corresponding to D0 branes, D4 branes, and F1 strings, and dipole charges

corresponding to D6, D2 and NS5 branes. We use the T-duality rules (given in appendix

A) to transform field-strengths. It should be emphasized that our results are correct for

any three-charge solution (including those without a tri-holomorphic U(1) [41]), however,

finding the explicit form of the RR and NS-NS potentials (which is crucial if we want to

investigate this solution using probe supertubes) is straightforward only when the solution

can be written in Gibbons-Hawking form.

Label the coordinates by (x0, . . . , x8, z).7 The electric charges N1, N2 and N3 of the

solution then correspond to:

N1 : D0 N2 : D4 (5678) N3 : F1 (z) (2.18)

where the numbers in the parentheses refer to spatial directions wrapped by the branes

and z ≡ x10. The magnetic dipole moments of the solutions correspond to:

n1 : D6 (y5678z) n2 : D2 (yz) n3 : NS5 (y5678) , (2.19)

where y denotes the brane profile in the spatial base, (x1, . . . , x4). The metric of the

solution is:

ds2IIA = − 1

Z3

√
Z1Z2

(dt+ k)2 +
√
Z1Z2ds

2
4 +

√
Z1Z2

Z3
dz2 +

√
Z1

Z2

(
dx2

5 + dx2
6 + dx2

7 + dx2
8

)
.

(2.20)

The dilaton and the Kalb-Ramond fields are:

Φ =
1

4
log

(
Z3

1

Z2Z2
3

)
, B = −dt ∧ dz −A(3) ∧ dz . (2.21)

The RR field strengths are

F (2) = −F (1) , F̃ (4) = −
(

Z5
2

Z3
1Z

2
3

)1/4

⋆5 (F (2)) ∧ dz , (2.22)

where we define F (I) ≡ dA(I) and ⋆5 is the Hodge dual with respect to the five dimen-

sional metric:

ds25 = − 1

Z3

√
Z1Z2

(dt + k)2 +
√
Z1Z2ds

2
4 . (2.23)

The foregoing results are valid for any three-charge solution with an arbitrary hyper-Kähler

base. As we show in appendix A, when the base has a Gibbons-Hawking metric one can

easily find the RR 3-form potential:

C(3) =
(
ζa + V −1K3ξ(1)a

)
Ω

(a)
− ∧ dz −

(
Z−1

3 (dt+ k) ∧B(1) + dt ∧A(3)
)
∧ dz , (2.24)

where ξ
(1)
a and ζa are defined by equations (2.9) and (A.36). Thus we have the full three-

charge supergravity solution in the D0-D4-F1 duality frame. In section 4 we will perform

a probe analysis in this class of backgrounds using the DBI action for supertubes with D0

and F1 electric and D2 dipole charge.

7See appendix A for more details about the brane configuration that we use.
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2.3 Three-charge solutions in the D1-D5-P duality frame

One can T-dualize the solution above along z to obtain a solution with D1, D5 and mo-

mentum charges:

N1 : D1 (z) N2 : D5 (5678z) N3 : P (z) (2.25)

and dipole moments corresponding to wrapped D1 branes, D5 branes and Kaluza Klein

Monopoles (kkm):

n1 : D5 (y5678) n2 : D1 (y) n3 : kkm (y5678z) . (2.26)

The metric is

ds2IIB = − 1

Z3

√
Z1Z2

(dt+ k)2 +
√
Z1Z2 ds

2
4 +

Z3√
Z1Z2

(
dz +A(3)

)2
(2.27)

+

√
Z1

Z2

(
dx2

5 + dx2
6 + dx2

7 + dx2
8

)
(2.28)

and the dilaton and the Kalb-Ramond field are:

Φ =
1

2
log

(
Z1

Z2

)
, B = 0 . (2.29)

The only non-zero RR three-form field strength is:

F (3) = −
(

Z5
2

Z3
1Z

2
3

)1/4

⋆5

(
F (2)

)
−F (1) ∧

(
dz −A(3)

)
. (2.30)

If we specialize our general result to the supersymmetric black ring solution in the D1-D5-P

frame then it agrees (up to conventions) with [42]. It is also elementary to find the RR

two-form potential for a general BPS solution with GH base in D1-D5-P frame. This can

be done by T-dualizing the IIA D0-D4-F1 result (2.24), to obtain:

C(2) =
(
ζa + V −1K3ξ(1)a

)
Ω

(a)
− −

(
Z−1

3 (dt+ k) ∧B(1) + dt ∧A(3)
)

(2.31)

+A(1) ∧ (A(3) − dz − dt) + dt ∧ (A3 − dz) , (2.32)

where again ξ
(1)
a and ζa are defined in equations (2.9) and (A.36). This is the full three-

charge supergravity solution in the D1-D5-P duality frame. As shown in [5], two-charge

supertubes in flat space are regular only in this duality frame, so our general result can be

used to analyze the regularity of two charge supertubes in a general three-charge solution.

This will be the subject of the next section.

3 Regularity of supertubes in supergravity

3.1 Constraints from supertube regularity

Consider the D1-D5-P solutions in which one of the centers has vanishing GH charge, and

non-trivial D1 and D5 electric charges. Generally such a solution is not regular and can
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have a horizon or a naked singularity. However, the solution will be regular if one arranges

the charges at this point to be those of a two-charge supertube.

Suppose that at r1 = 0 we have a round two-charge supertube with one dipole charge.

We take the latter to be k3
1 and so we have k1

1 = k2
1 = 0 and l31 = 0. This means that in

the neighborhood of a two-charge supertube at r1 = 0, we must have:

ZI ∼ O(r−1
1 ) , I = 1, 2 ; V,Z3 ∼ finite . (3.1)

The six-dimensional metric in IIB frame can be re-written as:

ds26 = − 1

Z3

√
Z1Z2

(dt+ k)2 +
√
Z1Z2 ds

2
4 +

Z3√
Z1Z2

(
dz +A(3)

)2
. (3.2)

To check regularity along the supertube one must examine potential singularities along

the ψ-fiber by collecting all the (dψ +A)2 terms in (3.2):

(Z1Z2)
− 1

2 V −2
[
Z3 (K3)2 − 2µV K3 + Z1Z2V

]
(dψ +A)2 . (3.3)

For regularity as r1 → 0, one must have:

lim
r1→0

r21
[
Z3 (K3)2 − 2µV K3 + Z1Z2V

]
= 0 . (3.4)

Next there is a potential problem with CTC’s coming from Dirac strings in ω. For ω

to have a Dirac string originating at r1 = 0, the source terms in the equation for ~ω must

have a piece that behaves as a constant multiple of ~∇ 1
r1

. To examine this, it is easier to

use (2.12) and recall that Z3, K
1,K2 and V are finite as r1 → 0. Thus the only sources of

“dangerous terms” are V ~∇µ and Z3
~∇K3. Since V and Z3 are finite at r1 = 0, there will

be no Dirac strings starting at r1 = 0 if and only if:

lim
r1→0

r1
[
V µ− Z3K

3
]

= 0. (3.5)

The two conditions, (3.4) and (3.5), guarantee that the supertube smoothly caps off

the spatial geometry and are the generalization to three-charge three-dipole backgrounds

of the conditions for smooth cap-off in [5].

One can massage these conditions using (3.5) to eliminate all the explicit K3 terms

in (3.4). The condition (3.4) may then be written as

lim
r1→0

r21 Q = 0 . (3.6)

where Q is the E7 invariant that determines the four-dimensional horizon area [14, 15]:

Q ≡ Z1Z2Z3V − µ2 V 2 (3.7)

= −M2 V 2 − 1

3
M CIJKK

I KJ Kk −M V KI LI −
1

4

(
KILI

)2

+
1

6
V CIJKLILJLK +

1

4
CIJKCIMNLJLKK

MKN . (3.8)
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We will therefore refer to (3.6) as the quartic constraint. Note that the right-hand side

of (2.12) is the quadratic E7 invariant, and so we may view (3.5) as the “quadratic con-

straint.” It is, however, convenient to rewrite this constraint by eliminating µ from (3.4)

using (3.5). One then obtains:

lim
r1→0

r21
[
V Z1Z2 − Z3 (K3)2

]
= 0 . (3.9)

We will use (3.5) and (3.9) as the independent constraints because they are simplest

to apply.

In flat space the supertube solution has V =
1

r
, K1 = K2 = 0 and Z3 = 1, and

equation (3.9) determines the radius of the supertube in terms of its charges, and (3.5) fixes

the parameter m1 of (2.13), and thus determines the angular momentum of the supertube

in terms of its radius and charges.

3.2 Supertube regularity and spectral flow

As explained in [38], one can obtain a solution with a supertube inside a general three-

charge solution by spectrally flowing a smooth horizonless bubbling solution.8 Since spec-

tral flow is implemented by a coordinate change in six dimensions, it cannot affect the

smoothness or the regularity of the solution. Equivalently, regularity is determined by

placing conditions on quadratic and quartic E7 invariants, and as shown in [38], these are

invariant under spectral flow transformations.

We therefore expect that the equations that determine the smoothness of super-

tubes, (3.4), (3.5) and (3.9), should be related by spectral flow to the equations that

determine the smoothness of a usual bubbling solution. Indeed, consider the spectral flow

transformation (see [38] for more detail):

Ṽ = V + γ K3 , K̃1 = K1 − γ L2 , K̃2 = K2 − γ L1 , K̃3 = K3 (3.10)

L̃1 = L1 , L̃2 = L2 , L̃3 = L3 − 2 γ M , M̃ = M , (3.11)

with

γ = − q1
k3
1

. (3.12)

This transformation maps a GH bubbled solution to a GH bubbled solution with a super-

tube at r1 = 0. Under this spectral flow one also has:

Z̃1 =

(
V

Ṽ

)
Z1 , Z̃2 =

(
V

Ṽ

)
Z2 , µ̃ =

(
V

Ṽ

) (
µ− γ

Z1Z2

Ṽ

)
, (3.13)

Z̃3 =

(
Ṽ

V

)
Z3 + γ2

(
Z1Z2

Ṽ

)
− 2 γµ . (3.14)

8See also [39, 40].
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In the usual bubbling solution, regularity requires that the ZI are finite and µ→ 0 as

r1 → 0. In the solution with the supertube one can use this and (3.14) to verify that:

lim
r1→0

r1

[
Ṽ µ̃− Z̃3 K̃

3
]

= −γ lim
r1→0

r1

(
V Z1Z2

Ṽ

) (
1 + γ

K3

V

)
, (3.15)

lim
r1→0

r21

[
Ṽ Z̃1Z̃2 − Z̃3 (K̃3)2

]
= lim

r1→0
r21

(
Z1Z2

Ṽ

) (
V 2 − γ2(K3)2

)
. (3.16)

Both of these vanish by virtue of (3.12) and the finiteness of the ZI and Ṽ as r1 → 0.

Hence, the equations determining the smoothness and regularity of two-charge supertubes

are related by spectral flow to those determining the smoothness and regularity of usual

three charge bubbling solution.

4 Supertube probes and mergers in BPS solutions

We now turn to the description of supertubes in terms of the Dirac-Born-Infeld (DBI)

action. Our purpose is four-fold: to show that the supertubes that are solutions of the DBI

action back-react into smooth horizonless geometries; to identify the Born-Infeld charges

of supertube with those of the corresponding solution with a Gibbons-Hawking base; to

facilitate the analysis of chronology protection in section 5, and to set the stage for the

entropy enhancement calculation in section 6.

We begin with a review of supertubes in the background of a three-charge rotating

BPS (BMPV) black hole [43, 44], and then extend this to a black ring, and to more

general three-charge backgrounds. The first goal is to show that the Born-Infeld calculation

captures the same essential data that is given by the regularity conditions of the fully back-

reacted supergravity solution. We will also show that the Born-Infeld analysis and exact

supergravity analysis give the same merger conditions for supertubes with black rings.

4.1 Supertubes in a three-charge black hole background

As a warm up exercise, we first consider a probe supertube with two charges and one

dipole charge in the background of a three-charge (BMPV) black hole. This example was

considered in [43, 44] and was generalized to a probe supertube with three charges and

two dipole charges in [45]. The full supergravity solution describing a BMPV black hole on

the symmetry axis of a black ring with three charges and three dipole charges was found

in [20, 30], and a more general solution in which the black hole is not at the center of the

ring was found in [46]

First, we need the BMPV black hole solution in the D0-D4-F1 duality frame. The

metric (in the string frame) is:

ds210 = − 1√
Z1Z2Z3

(dt+ k)2 +
√
Z1Z2

(
dρ2 + ρ2

(
dϑ2 + sin2 ϑϕ2

1 + cos2 ϑdϕ2
2

))

+

√
Z1Z2

Z3
dz2 +

√
Z1

Z2
ds2T 4 (4.1)
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and the dilaton and the Kalb-Ramond field are given by:

Φ =
1

4
log

(
Z3

1

Z2Z2
3

)
, B = (Z−1

3 − 1)dt ∧ dz + Z−1
3 k ∧ dz . (4.2)

The non-trivial RR potentials are:

C(1) = (Z−1
1 − 1)dt+Z−1

1 k , C(3) = −(Z2 − 1)ρ2 cos2 ϑdϕ1 ∧ dϕ2 ∧ dz+Z−1
3 dt∧ k∧ dz .

(4.3)

The one-form k and the functions ZI are given by

k = k1dϕ1 + k2dϕ2 =
J

ρ2
(sin2 ϑdϕ1 − cos2 ϑdϕ2) , ZI = 1 +

QI

ρ2
, (4.4)

where J is the angular momentum of the black hole. The charges, Q1, Q2 and Q3 corre-

spond to the respective D0 brane, D4 brane and F1 string charges of the black hole.

This solution is indeed a BPS, five-dimensional, rotating black hole [47] with an event

horizon at r = 0, whose area is proportional to
√
Q1Q2Q3 − J2. For J2 > Q1Q2Q3 the

solution has closed time-like curves and is unphysical.

We will denote the world-volume coordinates on the supertube by ξ0, ξ1 and ξ2 ≡ θ.

To make the supertube wrap z we take ξ1 = z and we will fix a gauge in which ξ0 = t. Note

that z ∈ (0, 2πLz). The profile of the tube, parameterized by θ, lies in the four-dimensional

non-compact R
4 parameterized by (ρ, ϑ, ϕ1, ϕ2) and for a generic profile all four of these

coordinates will depend on θ.

It is convenient to use polar coordinate (u, ϕ1) and (v, ϕ2) in R
4 = R

2 ×R
2, where the

R
4 metric takes the form:

ds24 = dρ2 + ρ2
(
dϑ2 + sin2 ϑdϕ2

1 + cos2 ϑdϕ2
2

)
= du2 + u2dϕ2

1 + dv2 + v2dϕ2
2 . (4.5)

There is also a gauge field, F , on the world-volume of the supertube. Supersymmetry

requires that F essentially has constant components and we can then boost the frames so

that Ftθ = 0.

In this frame supersymmetry also requires Ftz = 1 [1]. For the present we take

2πα′F ≡ F = Ftzdt ∧ dz + Fzθdz ∧ dθ , (4.6)

where the components are constant. Keeping Ftz as a variable will enable us to extract

the charges below.

The supertube action is a sum of the DBI and Wess-Zumino (WZ)actions:

S = −TD2

∫
d3ξe−Φ

√
−det

(
G̃ab + B̃ab + Fab

)
+ TD2

∫
d3ξ

[
C̃(3) + C̃(1) ∧ (F + B̃)

]
,

(4.7)

where, as usual, G̃ab and B̃ab are the induced metric and Kalb-Ramond field. We have

also chosen the orientation such that ǫtzθ = 1. It is also convenient to define the following

induced quantities on the world-volume:

∆µν = ∂µu∂νu+ u2∂µϕ1∂νϕ1 + ∂µv∂νv + v2∂µϕ2∂νϕ2 , γµ = k1∂µϕ1 + k2∂µϕ2, (4.8)

where ∂µ ≡ ∂
∂ξµ .
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After some algebra, the DBI part of the action simplifies to:

SDBI =−TD2

∫
dtdzdθ

{
1

Z2
1

(
Fzθ−γθ(Ftz−1)

)2
+
Z2

Z1
∆θθ

[
2(1−Ftz)−Z3(Ftz−1)2

]}1/2

,

(4.9)

while the WZ piece of the action takes the form

SWZ = TD2

∫
dtdzdθ

[
(1 −Ftz)

γθ

Z1
+ Fzθ

(
1

Z1
− 1

)]
. (4.10)

For a supersymmetric configuration (Ftz = 1) we have

SFtz=1 = SDBI + SWZ = −TD2

∫
dtdzdθFzθ (4.11)

The foregoing supertube carries D0 and F1 “electric” charges, given by

NST
1 =

TD2

TD0

∫
dzdθFzθ, NST

3 =
1

TF1

∫
dθ

∂L
∂Ftz

∣∣∣∣
Ftz=1

. (4.12)

The Hamiltonian density is:

H|Ftz=1 =

[
∂L
∂Ftz

Ftz − L
]

Ftz=1

= TD2Fzθ +
∂L
∂Ftz

∣∣∣∣
Ftz=1

. (4.13)

One can easily integrate this to get the total Hamiltonian of the supertube9 (we assume

constant charge density Fzθ)

∫
dzdθ H|Ftz=1 = NST

1 +NST
3 . (4.14)

Thus the energy of the supertube is the sum of its conserved charges which shows that the

supertube is indeed a BPS object.

Now choose a static round supertube profile u′ = v′ = ϕ′
2 = 0, ϕ1 = θ. One then has:

γθ = k1 = J
u2

(u2 + v2)2
, ∆θθ = u2 (4.15)

and the supertube “electric” charges are:

NST
1 = nST

2 Fzθ , NST
3 = nST

2

Z2u
2

Fzθ
. (4.16)

So we find

NST
1 NST

3 = (nST
2 )2u2 Z2 . (4.17)

This is an important relation in that it fixes the location of the supertube in terms of its

intrinsic charges.

9See appendix D for details about our units and conventions.
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This computation was used in [43] to study the merger of a supertube and a black hole.

In particular, a supertube can merge with a black hole if and only if NST
1 NST

3 ≤ (nST
2 )2N2,

where N2 is the number of D4 branes in the black hole. Moreover, the supertube will

“crown” the black hole at “latitude”, ϑ = α, given by:

sinα =

√
NST

1 NST
3

(nST
2 )2N2

. (4.18)

One can also show that one cannot violate chronology protection by throwing a supertube

into the black hole, that is, one cannot over-spin the black hole and that the bound J2 ≤
N1N2N3 is preserved after the merger.

4.2 Supertubes in a black-ring background

We now repeat the foregoing analysis in the background of a supersymmetric black ring

where there will be new physical effects due to the interaction between the dipole charges of

the black ring and the dipole charge of the supertube. We will also examine the symmetric

merger of the supertube with the black ring and show that chronology protection is not

violated. In section 4.4 we will perform a more general analysis by considering a probe

supertube that has three charges and two dipole charges.

4.2.1 The black-ring solution

The three-charge, three-dipole charge black ring solution [20, 30, 42, 48, 49] in a IIA duality

frame where the ring has D0, D4 and F1 electric charges and D6, D2 and NS5 dipole charges

is given by:

ds2 = −(Z2Z1)
−1/2Z−1

3 (dt + k)2 + (Z2Z1)
1/2ds2

R4 + (Z2Z1)
1/2Z−1

3 dz2 + Z
−1/2
2 Z

1/2
1 ds2T 4,

e2Φ = Z
−1/2
2 Z

3/2
1 Z−1

3 , (4.19)

B = (Z−1
3 − 1)dt ∧ dz + Z−1

3 k ∧ dz −B(3) ∧ dz ,

for the NS-NS fields, and

C(1) = (Z−1
1 − 1)dt + Z−1

1 k −B(1), (4.20)

C(3) = Z−1
3 dt ∧ k ∧ dz − Z−1

3 (dt+ k) ∧B(1) ∧ dz +B(3) ∧ dt ∧ dz − γ1 ∧ dz , (4.21)

for the R-R fields. The one-forms, B(I), are the potentials defined in section 2.1 with

dB(I) = Θ(I). These fields are the magnetic sources of the ring. The two-form, γ1,

must satisfy:

dγ1 = ⋆4dZ2 −B(1) ∧ Θ(3) . (4.22)

We use the canonical coordinates that are adapted to the symmetries of the black ring

in the flat metric of the R
4 base [48]:

ds2
R4 = gµνdy

µdyν =
R2

(x− y)2

(
dy2

y2 − 1
+ (y2 − 1)dϕ2

1 +
dx2

1 − x2
+ (1 − x2)dϕ2

2

)
. (4.23)
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We will also use the orientation: ǫyxϕ1ϕ2 = 1. In these coordinates, the black ring horizon

is located at y → −∞. It is useful to recall that the change of coordinates:

x = − u2 + v2 −R2

√
((u−R)2 + v2)((u+R)2 + v2)

, y = − u2 + v2 +R2

√
((u−R)2 + v2)((u+R)2 + v2)

(4.24)

takes one back to the standard flat metric on R
2 × R

2 (4.5) parameterized by (u, ϕ1) and

(v, ϕ2) with the ring horizon at u = R, v = 0.

The warp factors ZI are

ZI = 1 +
QI

2R2
(x− y) − CIJK

2

qJqK

4R2
(x2 − y2), (4.25)

where QI are what we refer to as “constituent charges” of the black ring, and differ from

the charges measured at infinity. The angular momentum vector is given by

k = k1dϕ1 + k2dϕ2 (4.26)

= −
(
(y2 − 1) (C(x+ y) +D) −A(y + 1)

)
dϕ1 −

(
(x2 − 1) (C(x+ y) +D)

)
dϕ2

with A = (q1 + q2 + q3)/2, D = (q1Q1 + q2Q2 + q3Q3)/8R
2 and C = −q1q2q3/8R2. The

vector fields, B(I), are given by

B(I) =
qI

2
((y + d)dϕ1 − (x+ c)dϕ2) . (4.27)

The constants c and d are locally pure gauge and are not fixed by the equations of motion.

Indeed, because the ring carries a magnetic current there will Dirac strings in any attempt

at a global definition of B(I). In the (u, v, ϕ1, ϕ2) coordinate patch, defined by (4.24), the

vector fields, B(I), are potentially singular at either u = 0, or v = 0. To remove these

singularities we must have (y + d) = 0 at u = 0 and (x+ c) = 0 at v = 0. From (4.24) we

see that this unambiguously requires d = +1 but that one has x = +1 for v = 0, u < R

and x = −1 for v = 0, u > R and so to remove the Dirac strings we must take:

d = +1 , c = −1 inside the ring ; d = +1 , c = +1 outside the ring . (4.28)

The coordinates (x, ϕ2) in fact define a Gaussian two-sphere around the ring and the

choices (4.28) represent the familiar gauge field patches surrounding a magnetic monopole.

In the following we will set d = 1 and retain c with the understanding that it is to be

chosen as in (4.28).

The two-form γ1 in C(3) has the form γ1 = f(x, y)dϕ1 ∧ dϕ2 where

f(x, y) = −Q2

2

1 − xy

x− y
+
q1q3
4

[
(1 − xy)(x+ y)

x− y
+ cy − dx

]
+ f0. (4.29)

where f0 is another integration constant. It is shown in appendix A that γ1 satisfies (4.22).

We want to stress that our conventions are such that

QI = N I and qI = nI (4.30)
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where N I and nI are integers and specify the number of “electric” and “dipole” D-branes

comprising the black ring. It is also useful to note that the angular momentum of the black

ring is related to its dipole charges by

J = 4(q1 + q2 + q3)R . (4.31)

4.2.2 The black ring as a solution with a Gibbons-Hawking base

Since Gibbons-Hawking (GH) geometries play an important role in bubbled solutions, and

in our discussion here, it is useful to re-write the foregoing solution in terms of these

geometries. The change of variables between the ordinary flat R
4 coordinates (u, ϕ1, v, ϕ2)

and the GH coordinates (ψ, r, χ, φ):

r =
1

4

(
u2 + v2

)
, χ = 2arctan

u

v
, ψ = 2ϕ1 , φ = − (ϕ2 + ϕ1) , (4.32)

and recall that u and v are related to x and y by (4.24). The metric in the new coordi-

nates is:

ds2
R4 = r (dψ + (cosχ+ 1)dφ)2 +

1

r

(
dr2 + r2dχ2 + r2 sin2 χdφ2

)
(4.33)

The black ring solution is written in terms of eight harmonic functions V , LI , K
I and

M [14, 30–33]. However, as we noted in the last subsection, the black ring has a monopolar

magnetic field and so we need two patches that are related by a gauge transformation.

Remembering that the vector potentials in solutions with a GH base are given by

B(I) = V −1KI(dψ +A) + ξI , (4.34)

one can easily identify the KI that give these fields, and observe that changing the patch

from c=−1 to c=+1 corresponds, in the GH solution, to the gauge transformation:

KI → KI + cIV , LI → LI − CIJKc
JKK − 1

2
CIJKc

JcKV, (4.35)

M → M − 1

2
cI LI +

1

12
CIJK

(
V cI cJ cK + 3 cI cJ KK

)
,

with cI = qI/2. Thus, we can now completely specify the eight harmonic functions, once

we choose a patch. For c = −1, we have

V =
1

r
, KI = − qI

2|~r − ~rBR|
,

LI = 1 +
QI

4|~r − ~rBR|
, M = − J

16|~r − ~rBR|
+

J

16R
, (4.36)

and for c = +1 they become

V =
1

r
, KI = − qI

2|~r − ~rBR|
+
qI
2r
,

LI = 1 +
QI + CIJKq

JqK

4|~r − ~rBR|
− CIJKq

JqK

8r
, M = −J + qIQI + 3q1q2q3

16|~r − ~rBR|
− q1q2q3

16r
.

– 17 –



J
H
E
P
0
7
(
2
0
0
9
)
1
0
6

As noted earlier, these formulae define the GH charges of the black ring and these, in turn,

define the electric charges of the four-dimensional black hole corresponding to the ring. The

electric GH charges QGH
I are four times the coefficients of the pole at the location of the

ring in the LI functions, the GH dipole charges qGH
I are minus two times the coefficients of

the pole in the KI functions, and the GH angular momentum JGH is minus sixteen times

the coefficient of the pole in M (we use the conventions of [14]). Thus, we have:

QGH
I = QI , qGH

I = qI , JGH = J (4.37)

for c = −1 and

QGH
I = QI +CIJKq

JqK , qGH
I = qI JGH = J + qIQI + 3q1q2q3 (4.38)

for c = +1.

The dipole charges are patch-independent, but the GH electric charges and the GH

angular momentum are gauge dependent notions, and are different in different patches.

This will be important in the following discussion.

4.2.3 Probing the black ring with two-charge supertubes

We now probe the black ring background with a two-charge supertube [1, 50]. The calcu-

lation proceeds in much the same way as for the supertube in a black hole background. As

before, we parameterize the tube by (t, z, θ), and define an a priori arbitrary supertube

profile in R
4 by ~y(θ). Since we are ultimately going to consider a supertube that winds

multiple times around the ring direction it will be convenient to take θ ∈ (0, 2πnST
2 ) where

nST
2 will become this winding number. Thus the supertube will have a dipole charge pro-

portional to nST
2 , and two net charges proportional to NST

1 and NST
3 . Its action is a sum

of a DBI and a WZ term

S = SDBI + SWZ = −TD2

∫
dtdzdθe−Φ

√
− det(G̃ab + B̃ab + Fab) (4.39)

+TD2

∫
dtdzdθ

(
C̃

(3)
tzθ + C̃

(1)
t (B̃zθ + Fzθ) + C̃

(1)
θ (B̃tz + Ftz)

)

For the supersymmetric configuration one once again finds that Ftz = 1 and if one

imposes this ab initio then one again obtains (4.11), (4.12) and (4.13) and hence the BPS

relation for the supertube. The expression for the derivative of the action with respect to

Ftz evaluated at Ftz = 1 can be most convenient expressed as:

(
∂L
∂Ftz

∣∣∣∣
Ftz=1

+ TD2

(
B(1)

ϕ1
ϕ′

1 +B(1)
ϕ2
ϕ′

2

))(
Fzθ +

(
B(3)

ϕ1
ϕ′

1 +B(3)
ϕ2
ϕ′

2

))
= TD2Z2gµνy

′µy′ν ,

(4.40)

where ′ denotes the derivative with respect to θ. As for the black hole [43, 44], one can rein-

terpret this in terms of charge densities and arrive at a generalization of the constraint (4.17)

that relates the charges to the radius of the supertube. Note that the condition (4.40) is

local and to get a relation similar to (4.17) on has to integrate over the profile of the

supertube. There is an important new feature here in that there is a contribution from
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the interactions of the dipole charges of the supertube and background. This appears

through the pull-back of the B(I) to the world-volume of the supertube and it gives an

added contribution to the basic supertube charges to yield what we will refer to as the

local effective charges of the supertube. We will show in section 4.4 that this also happens

when supertubes are placed in three-charge solutions with a GH base.

It is also important to remember that the Wess-Zumino action of the supertube is only

invariant under local small gauge transformations, but is not necessarily invariant under

large gauge transformations. Indeed, the black ring is a magnetic object, and as such the

gauge fields, B(I) are not defined globally but on patches. Their values, and the value of

the supertube action, differ from patch to patch by what can be thought of as the effect of

a large gauge transformation.

More explicitly, the action depends on the Wilson lines of these gauge fields taken

around latitudes of the two-sphere that surrounds the black ring (which is the equivalent

of the sphere that contains a monopole charge). The value of these Wilson loops may then

be defined using Stokes theorem as the integral of the magnetic flux coming from the black

ring through the section of the sphere surrounded by the Wilson line. There is, however,

an obvious ambiguity: does one integrate the flux over the upper or the lower cap of the

sphere? The difference is, of course, the monopole charge inside the sphere multiplied by

the number of times the Wilson loop winds around the latitude circle. These ambiguities

will manifest themselves in the definitions of the constituent charges of the supertube.

To analyze the physics of the merger, we consider a supertube embedded in spacetime

along the curve ~y(θ) given by:

ϕ1 = −θ , ϕ2 = −ν θ (4.41)

x and y being at fixed values. The projections of the supertube in the (y, ϕ1) and (x, ϕ2)

planes are circular, with winding numbers nST
2 and νnST

2 respectively. For ν = 0, the

supertube is circular and simply winds around the plane of the ring nST
2 times. For ν 6=0,

the details of the winding depend upon the equilibrium position of the supertube. We also

assume, for simplicity, that the charge densities of the tube are independent of θ. Under

these assumptions the condition (4.40) becomes:

[
NST

1 − 1

2
nST

2 n3 (y + 1 − ν(x+ c))

] [
NST

3 − 1

2
nST

2 n1 (y + 1 − ν(x+ c))

]
=

(
nST

2

)2
Z2

R2

(x− y)2
(
(y2 − 1) + ν2(1 − x2)

)
. (4.42)

We will call this equation the radius relation. Note that this equation is invariant under

the exchange of N1, n1 with N3, n3, as expected by U-duality. Comparing this constraint

to the one for a black hole background (4.17), we see that the charges of the supertube are

enhanced to their effective charges via the interactions of the dipole charges. This is an

important result that we will discuss further in the subsequent sections.

To get a better idea of the supertube configuration in the black-ring geometry it is

instructive to examine the supertube as it approaches the horizon (y → −∞). In this
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limit, the physical metric along the horizon becomes:

ds23 =
(
C2R4

)1/3
[ (

64C2R4
)−1 M dϕ2

1 +
(
dα2 + sin2 α (dϕ1 + dϕ2)

2
) ]

, (4.43)

where we have set x = cosα, and the parameter, M, is proportional to the square of the

black-ring entropy

S = π
√
M, (4.44)

and is given by

M = 2n1n2N1N2+2n1n3N1N3+2n2n3N2N3−(n1N1)
2−(n2N2)

2−(n3N3)
2−4n1n2n3J ,

(4.45)

where J is the “intrinsic” angular momentum of the ring, and is given by the difference

between the two angular momenta of the five-dimensional solution:

J = J1 − J2 = 4(n1 + n2 + n3)R . (4.46)

The topology of the horizon is S2 × S1, but observe that for a supertube that winds

according to (4.41), the winding around the horizon is determined by

ϕ1 = −θ , ϕ1 + ϕ2 = −(ν + 1) θ . (4.47)

The supertube thus enters the horizon by winding around the S1 but enters at a point on

the S2 if and only if ν = −1. Otherwise it winds around the S1 and “crowns” the S2 by

winding (ν + 1) times around a latitude determined by x.

If we now examine the constraint (4.42) and send y → −∞ the supertube will merge

with the black ring and the constraint (4.42) will become the merger condition:

NST
1 n1 +NST

3 n3 −N2n
ST
2 = nST

2 n1n3((1 + c) − (ν + 1)(x + c)) . (4.48)

More explicitly, this condition be written as:

NST
1 n1 +NST

3 n3 −N2n
ST
2 = nST

2 n1n3 (ν + 1)(1 − x) for c = −1 . (4.49)

NST
1 n1 +NST

3 n3 −N2n
ST
2 = nST

2 n1n3 (2 − (ν + 1)(1 + x)) for c = +1 . (4.50)

The relation (4.48) is simply the analogue of the equation giving the merging angle

for the supertube in a black-hole background (4.18). In particular, as depicted in figure 1,

it determines the value of x (which corresponds to an angular variable on the horizon)

at which a supertube with a given set of charges enters the black ring horizon. Since

−1 ≤ x ≤ +1, this restricts the permissible charges of supertubes that merge with a given

black ring.

We can see that the radius relation (4.42) and the merger condition (4.48) depend both

on the gauge choice (by an x-independent factor) and also on ν + 1. We can understand

this gauge dependance in a physical way: the gauge choice corresponds to a choice for the

location of the Dirac string. In other words, the gauge dependance comes from the fact

that the tube feels the presence of the Dirac string of the background. Increasing x then
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α

Figure 1. Different black ring and supertube configurations for different values of the supertube

charges. In the first picture, the charges of the tube are too small, and hence the tube it is too

small, and passes inside the ring. In the second one, the tube is too large and passes on the outside

of the ring. In the third picture, the size of the tube is in the correct range for the merger to be

possible. The angle α of the merger depends on the tube charges according to (4.48).

corresponds to the supertube wrapping, for c = −1, or not wrapping, for c = +1 the Dirac

string, as can be seen in figure 2.

More precisely, if we choose c = −1, that is if we choose the Dirac string to extend

from the ring location to infinity, then we can put the tube everywhere except on the Dirac

string. If we put it at x = 1, the φ circle becomes degenerate and indeed in (4.49) the ν

dependance disappears. This is expected, because ν+ 1 is the winding number of the tube

around a contractible circle. When the size of this circle is zero, the winding should be

irrelevant, which is indeed what happens.

If we now change the location of the ring to approach x = −1 without changing the

gauge, the tube winds ν + 1 times around the Dirac string; this winding is physically-

relevant, and hence, as expected, equation (4.49) depends on ν when x → 1. However, if

we change the gauge to move the Dirac string to the inside of the ring, we can see that

when the tube is at x = 1, where the φ circle is degenerate, the winding number is again

irrelevant; as expected the merger formula is again independent of ν. We should also note

that for the particular value ν = −1, the supertube never wraps the Dirac string, and

hence the merger condition does not depend upon x.

In section 5 we will examine the details of such a merger and discuss chronology

protection and black hole thermodynamics during mergers.

4.3 The black ring background: comparing the DBI analysis with supergravity

We now turn to the main purpose in this section: the relation between the merger conditions

obtained from supergravity and from the DBI analysis, and the relation between the GH

and the DBI charges of the supertube.

Let begin with the supergravity side. The supergravity solution corresponding to one

black ring and one supertube is given as usual the eight harmonic functions V , LI , K
I and
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φ

x=+1 BR x=−1

x=+1 BR x=−1

Figure 2. The black ring (in blue) with supertubes (in green) at various positions in the R
3 base

of the Gibbons-Hawking space. The black ring is point-like but the tube is point-like only if it lies

on the axis x = ±1. Otherwise, it winds ν+1 times the φ circle. On the left, the Dirac string starts

from the ring and extends to infinity. On the right, the Dirac string extends between the center of

the space and the ring location.

M . The poles of this functions at the location of the ring and of the tube are

K1 = − q1
2|~r − ~rBR|

, 2M = − JGH

8|~r − ~rBR|
− JGH,ST

8|~r − ~rST |
(4.51)

where QGH are the GH charges of the black ring defined in section 4.2.2, and QGH,ST are

the GH charges of the supertube defined in the same way. Recall once again that the GH

charges depend upon the choice of patch, as in (4.37) and (4.38), and the GH charges of

both the ring and the tube transform consistently between the patches.

To obtain the merger condition from supergravity observe that the bubble (or inte-

grability) equations (2.14) contain a term in which the E7(7) symplectic product of the

supertube and black ring GH charge vectors is divided by their separation. Hence, these

objects only merge if this symplectic product is zero.10 Explicitly, this gives11

NGH,ST
1 n1 +NGH,ST

3 n3 −NGH
2 nST

2 = 0. (4.52)

Note that the GH charges of the ring and of the tube are gauge dependent, but the

symplectic product is invariant.

10One could also imagine in principle the existence of a scaling solution, where the distances in R
3 between

the ring, supertube and the center of Taub-NUT go together to zero. In such a solution the ring and the

supertube would be spinning very rapidly in opposite directions, which is likely to introduce closed timelike

curves. We leave its exploration for future work.
11As noted in (4.30), we have adopted a set of conventions in which the supergravity charges, QST , are

the same as the integer charges.
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To compare the GH merger conditions (4.52) to the merger conditions obtained in the

previous section using the DBI action, one should recall that this condition describes only

those supertubes that correspond to point sources on the R
3 of the GH base. That is, the

supertubes are embedded into R
4 so as to wind around the GH fiber, and thus preserve the

same triholomorphic U(1) isometry as the black ring. From (4.41) and (4.32) we see that

the winding numbers of the supertube in the GH patch are given by (1, ν+1). (Remember

that ψ has period 4π.) Thus a supertube is point-like in the R
3 if and only if it has either

ν = −1 or it lies on the polar axis with x = ±1. We therefore restrict ourselves to mergers

with x = ±1 for any value of ν, or mergers with ν = −1.

For x = 1, we need to be on the patch c = −1, and (4.48) gives:

NST
1 n1 +NST

3 n3 −N2n
ST
2 = 0 . (4.53)

For x = −1, we need to be on the patch c = +1, and thus have:

NST
1 n1 +NST

3 n3 −N2n
ST
2 = 2nST

2 n1n3 . (4.54)

But using the relation (4.38), we can rewrite it as

NST
1 n1 +NST

3 n3 −NGH
2 nST

2 = 0 (4.55)

on both patches. The extra term in (4.54) is simply the shift in NGH induced by changing

patches. Thus, if we identify the DBI charge of the supertube with the GH charge of the

corresponding supergravity solution,

NST
I = NGH,ST

I , (4.56)

we have a perfect agreement between the supergravity approach (4.52) and the DBI ap-

proach (4.55).

The supertubes with ν = −1 do not wrap the φ circle of the R
3 base of the GH space,

and thus are point-like in this base for any value of x, and they source a supergravity

solution with a GH base for any location. Moreover, since these tubes do not wrap the

Dirac string, the merger relations become x independent. Equations (4.49) and (4.50)

then become

NST
1 n1 +NST

3 n3 −N2n
ST
2 = 0 for c = −1 , (4.57)

NST
1 n1 +NST

3 n3 −N2n
ST
2 = 2nST

2 n1n3 for c = +1 , (4.58)

which once again can be re-written as

NST
1 n1 +NST

3 n3 −NGH
2 nST

2 = 0 . (4.59)

Hence we arrive at the same conclusion as for supertubes at x = ±1: the DBI charges of

the supertube give the GH charges of the corresponding supergravity solution:

NST
I ≡ NGH,ST

I . (4.60)
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4.4 Black rings and three-charge two-dipole-charge supertubes

One can generalize the foregoing discussion of mergers to examine a three-charge, two

dipole charge supertube [43] merging with a generic black ring. This can be done both

in the probe approximation, using the DBI action, and in the exact supergravity solution.

This supertube is more general than the two-charge supertube, and although it does not

source a smooth supergravity solution in any duality frame, it can be used to study rather

more general classes of mergers.

The best duality frame to study this merger is that in which the three-charge supertube

is a dipolar D6-brane carrying electric D4, D0 and F1 charges. We take our tube to be along

the (x1, x2, x3, x4, z, ~y(θ))), where ~y(θ) describes a closed curve in the non-compact space.

As before, we take θ ∈ (0,2πnST
1 ) with nST

1 being the winding number of the supertube

which is also its D6 dipole charge. We introduce world-volume electric fields: Fzθ, Ftz , F12

and F34. where Ftz and Fzθ generate the F1 and D4 charges respectively and F12 and F34

are needed for the D0 charge. The integer charges are given by

NST
1 = ND0 =

1

2π

∫
dθFzθF12F34 , (4.61)

NST
2 = ND4 =

1

2π

∫
dθFzθ , (4.62)

NST
3 = NF1 =

1

2π

∫
dθ

∂L
∂Ftz

∣∣∣∣
Ftz=1

, (4.63)

nST
2 = nD2 = nST

1 F12F34 . (4.64)

Note that we can take the D4 dipole moments and D2 charges of the tube to be zero by

taking F12 and F34 to be traceless. Supersymmetry requires that Ftz = 1 and F12 =

F34 [43], and then one can show that

H|Ftz=1,F12=F34 = TD6FzθF12F34 + TD6Fzθ +
∂L
∂Ftz

∣∣∣∣
Ftz=1,F12=F34

, (4.65)

or equivalently

∫
d4xdzdθH|Ftz=1,F12=F34 = NST

1 +NST
2 +NST

3 , (4.66)

where H is the energy per unit five-dimensional volume.

As before, we will assume constant charge densities on the supertube worldvolume

and the interesting physical condition that generalizes (4.42) comes from the variation that

define the F1-charge, NST
3 :

[
NST

3 − 1

2
(nST

1 n2 + nST
2 n1)(y + 1 − ν(x+ c))

] [
NST

2 − 1

2
nST

1 n3(y + 1 − ν(x+ c))

]
=

nST
1

(
nST

1 Z1 + nST
2 Z2

) R2

(x− y)2
((y2 − 1) + ν2(1 − x2)) . (4.67)

Note that, using nST
1 NST

1 = nST
2 NST

2 , there is a symmetry between (D0,D6) and

(D4,D2) charges and dipole moments, as expected from U-duality. However since the tube
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has no NS5 dipole moment, there is no exchange symmetry between the F1 charge and

other charges.

One can extract the merger condition from this as before and one finds that, for a

merger with a black ring, (4.48) generalizes to:

n1N
ST
1 +n2N

ST
2 +n3N

ST
3 −nST

1 N1−nST
2 N2 = n3

(
n1n

ST
2 + n2n

ST
1

)
((1+c)−(ν+1)(x+c)).

(4.68)

When the three-charge supertube respects the GH isometry (x = ±1 for any ν or

ν = −1 for any x), one can also describe this merger in supergravity. The solution is given

by the same harmonic functions as in (4.51), except that now K1 and L2 also have poles

at the supertube location:

K1 → − qGH
1

2|~r − ~rBR|
− qGH,ST

1

2|~r − ~rST |
, L2 → QGH

2

4|~r − ~rBR|
+

QGH,ST
2

4|~r − ~rST |
. (4.69)

One can see that equation (4.68) is equivalent to the vanishing of the E7(7) symplectic

product of the GH charges of the black ring and those of the three-charge supertube, and

hence the merger conditions obtained from supergravity and from the Born-Infeld analysis

of the three-charge supertube are the same. The subtleties associated to the dependence

of the charges upon the patch are identical to those for the two-charge supertube, and we

will not discuss them again.

4.5 Supertubes in a general solution with a Gibbons-Hawking base

We now consider two-charge supertubes probing a general three-charge BPS solution with

a Gibbons-Hawking base and we will again work in the D0-D4-F1 duality frame. The

general BPS solution with three charges and three dipole charges and a GH base is given in

sections 2.1 and 2.2 and we proceed as we did for the black-hole and black-ring backgrounds

in sections 4.1 and 4.2. We denote the supertube coordinates as ξ0, ξ1 and ξ2 ≡ θ and

consider the simplified case of a circular supertube along the U(1) fiber of the GH base:

ξ0 = t , ξ1 = z , θ = ψ . (4.70)

The supertube action (4.40) takes the explicit form

S = TD2

∫
d3ξ

{[(
1

Z1
− 1

)
Fzθ +

K3

Z1V
+

(
µ

Z1
− K1

V

)
(Ftz − 1)

]
(4.71)

−
[

1

V 2Z2
1

[
(K3 − V (µ(1 −Ftz) −Fzθ))

2 + V Z1Z2(1 −Ftz)(2 − Z3(1 −Ftz))
]]1/2}

.

For Ftz = 1 the tube is supersymmetric and, as before, the Hamiltonian density is the

sum of the charge densities (4.13). Due to the supersymmetry there is a constraint similar

to (4.42), which determines the location of the supertube in terms of its charges
[
NST

1 + nST
2

K3

V

] [
NST

3 +
K1

V

]
= (nST

2 )2
Z2

V
, (4.72)

where the charges are still defined by (4.12).
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4.6 Gibbons-Hawking backgrounds: comparing the DBI analysis with super-

gravity

Equation (4.72) determines the position of a supertube in an arbitrary three-charge back-

ground with a triholomorphic U(1) isometry. Since both the supertube and the background

preserve this isometry, their fully back-reacted supergravity solution will have a Gibbons-

Hawking base, and its form is well-known. Hence, one can compare (4.72) to the corre-

sponding condition coming from the supergravity analysis of the supertube, and confirm

that supertubes that are solutions of the Born-Infeld action always give rise to smooth

supergravity solutions.

To do this, it is useful to remember that in any Gibbons-Hawking solution the singu-

larities in the harmonic functions K2, L1, L3 and M at the supertube location are given

by (4.51). If one now takes equation (3.9) for a supertube with charges QGH,ST
1 , QGH,ST

3

and qST
2 and uses the asymptotic behavior of these harmonic functions near the supertube

one obtains:
[
QGH,ST

1 − 2qST
2

K3

V

] [
QGH,ST

3 − 2qST
2

K1

V

]
=
(
qST
2

)2 Z2

V
. (4.73)

Since the supergravity GH charges, QGH,ST
1 , QGH,ST

3 , qST
2 , are the same as the integer

charges NGH,ST
1 , NGH,ST

3 , nST
2 , one sees that this agrees exactly with the DBI calculation.

It is interesting to observe that the DBI action only gives one equation of motion for the

supertube, (4.72), while the supergravity analysis of the supertube gives two independent

equations, that can be chosen to be any two of (3.4), (3.5) and (3.9). This is because in

the Born-Infeld analysis the inputs are the supertube charges and dipole charge, which

one first uses to find the embedding, and then one derives the angular momentum of the

supertube, JST , from that solution.

By contrast, in the supergravity analysis the angular momentum of the supertube along

the Gibbons-Hawking fiber appears as the coefficient of the singular part in the harmonic

function M , and is one of the inputs of the calculation. Indeed, in supergravity one can

build “supertube” solutions for any value of JT . However most of these solutions will be

singular: if JT is too large the solutions will have closed timelike curves, and if JT is too

small the solutions will have a naked singularity.12 Only one specific value of JT gives

a supergravity solution that is smooth and horizonless in the duality frame in which the

supertube charges correspond to D1 and D5 branes.

To find this value it is most convenient to use equation (3.4), and the expansion of

the harmonic functions (4.51) near the supertube location to find the supertube angular

momentum as a function of the supertube charges QGH,ST
1 , QGH,ST

3 and dipole charge qST
2 :

JGH,ST =
NGH,ST

1 NGH,ST
3

nST
2

(4.74)

To obtain this equation from the DBI analysis one needs to calculate the angular

momentum of the supertube along the Gibbons-Hawking fiber. This calculation is partially

12Such a singularity might be cloaked by a Planck-sized horizon [51].
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shown in appendix C13 and gives

JST =
NST

1 NST
3

nST
2

. (4.75)

This indicates that when supertubes are embedded in a solution with a Gibbons-

Hawking base, respecting the triholomorphic U(1) isometry of this solution, their Born-

Infeld analysis gives the equations needed for the fully back-reacted supergravity solution

of these supertubes to be smooth and free of closed timelike curves.

4.7 A comment on black rings in Taub-NUT and their four-dimensional

charges

An interesting by-product of our results in section 4.2.2 is that a given five-dimensional

supersymmetric black ring can be embedded in Taub-NUT [14, 32, 33] in many ways

depending upon the choice of the gauge field for the in the magnetic flux.14 We considered

patches and gauge choices that preserve the U(1) of the GH base and this still left a free

parameter, c, in (4.27). The two natural patches, with c = +1 and c = −1 have a single

Dirac string, and together they provide a complete cover of the solution. Other choices of

c split the Dirac strings into two parts, one at each pole of the S2. If one compactifies the

black ring down to a four-dimensional black hole then we saw that the electric charges of

the black hole are given by the GH electric charges at the ring location. We also saw that

the GH charges depended upon the choice of patch and if one uses the c = +1 or c = −1

then the black-hole charges are not the same as the electric charges, measured at infinity,

of the five-dimensional black ring.

Hence, from a four-dimensional perspective the black ring can correspond to an infi-

nite family of black holes, whose D2 and D0 charges are related via the gauge transfor-

mation (4.35). The effect of this transformation is to introduce Wilson lines for the gauge

fields along the Taub-NUT circle at infinity, and to create or remove Dirac strings at the

north or south pole of the black hole. Nevertheless, even if the four-dimensional charges

depend upon the choice of gauge, the warp factors ZI and the symplectic products that

determine the metric, the field strengths, and the location of the black ring, are invariant

under (4.35).

One can also take a peculiar gauge with c = 0 for which the solution has two Dirac

strings but for this choice the four-dimensional electric charges are the same as the asymp-

totic charges in the five-dimensional solution [17]. On the other hand, in this gauge the D0

charge is given neither by the five-dimensional “ring angular momentum” (which was the

difference between the two angular momenta in five dimensions), nor by the total angular

momentum in the plane of the ring, J1 (as assumed in [53]), but rather it is given by

a combination of the five-dimensional charges and angular momenta that has no obvious

interpretation in five dimensions:

Jc=0 = J1 − J2 +
1

2
qIQI +

3

4
q1q2q3 . (4.76)

13For supertubes in R
4 in the presence of arbitrary charges and dipole charges

14For the embedding of nonsupersymmetric black rings in Taub-NUT see [52]
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It is not hard to see that all the shifts of charges brought about by gauge trans-

formations leave the E7(7) quartic invariant unchanged. The entropy of the ring is still

determined by this invariant [15], but now as a function of the shifted electric charges, and

the shifted angular momentum. Therefore, the entropy of all the four-dimensional black

holes related to the ring can be understood microscopically by an MSW analysis [54] that

is done without the shift of L0. Hence, the observation of [17] that the five-dimensional

asymptotic electric charges of the black ring can be related to those of a four-dimensional

black hole does not solve the discrepancy between the two microscopic descriptions of black

rings15 [15, 53].

Our analysis thus establishes that the four-dimensional charges that one uses in the

E7(7) quartic invariant to obtain the black ring entropy, depend on the choice of patch, and

one can switch between various charges (like the asymptotic charges of the ring and the

intrinsic charges) by gauge transformations. Nevertheless, this transformation generically

also changes the angular momentum parameter (or the D0 charge). Therefore, in trying

to find the microscopic description of extremal non-BPS black rings (as was done recently

in [55]) one should not focus on the fact that a certain charge appears in the quartic

invariant, but rather on a gauge-independent concept like why, for a given choice of charges,

does a certain angular momentum parameter appear in the quartic invariant.

5 Chronology protection

Having obtained the condition under which a supertube and a black ring can merge, both

using the Born-Infeld description of supertubes, and (where appropriate) also using the

supergravity solution corresponding to the merger, we now turn to verifying that supertube

mergers preserve the physical properties of the black ring. For simplicity, and because it

is sufficient for capturing all the relevant physics of the merger, we will primarily focus on

circular embeddings for the tube (4.41).

5.1 Mergers of black rings with two-charge supertubes

We begin by considering the merger of a black ring with a two-charge supertube of arbitrary

shape. To do this one must first establish what shape can the supertube have when it

crosses the black ring horizon. Based on our intuition from supertubes merging with black

holes [43] we expect that the supertube will be parallel to the horizon, and that it should

not be possible to have a part of the supertube inside the black ring horizon and a part of

it is outside.

To see this we can analyze equation (4.40) and change variables to w = 1
y ; the merger

then happens at w → 0. After some algebra one can see that for w → 0 the leading

divergent term in (4.40) imposes the constraint ∂w
∂θ = 0, which implies that the supertube

is always tangent to the horizon when it merges to a black ring.

It is particularly important to examine the thermodynamics of mergers and see whether

by “throwing in” supertubes one could decrease the entropy of a black ring, or overspin

15One might get this impression from [17].
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it and introduce closed timelike curves (violating chronology protection). To do this one

must determine what are the charges that a supertube brings into a ring. As we saw in

the section 4.3, there are some subtleties in this determination and we cannot always add

the DBI charges of the supertube to the constituent charges, the N ’s, of the ring. We have

learned that the DBI charges have to be identified with the GH charges of the supertube,

which are patch-dependent, and are not the same as the constituent ones. We have seen

this explicitly from the supergravity solution for concentric mergers (when x = ±1) or

alternatively when we take ν = −1 so that the supertube does not wind around latitude

circles and crosses the ring horizon at a point on the S2 of the horizon. We will first focus

on mergers where the supertube merges at a point on the S2, and discuss the other ones

at the end of this subsection.

The entropy of the black ring is given by S = π
√
M where M is defined in (4.45)

M = 2n1n2N1N2+2n1n3N1N3+2n2n3N2N3−(n1N1)
2−(n2N2)

2−(n3N3)
2−4n1n2n3J .

(5.1)

Note that M is in fact the E7(7) quartic invariant and is therefore invariant under a gauge

transformation (4.35). In terms of GH charges of the ring, we have

M = 2n1n2N
GH
1 NGH

2 + 2n1n3N
GH
1 NGH

3 + 2n2n3N
GH
2 NGH

3

−(n1N
GH
1 )2 − (n2N

GH
2 )2 − (n3N

GH
3 )2 − 4n1n2n3J

GH . (5.2)

From the analysis in the previous section, we know that the supertube DBI charges

correspond to GH charges, and thus should be directly added to the GH charges of the ring.

To keep the expressions simple we will take the three electric and the three dipole

charges of the black ring charges to be equal, we will also assume that the two electric

charges of the supertube are equal, namely:

NGH
1 = NGH

2 = NGH
3 ≡ N , n1 = n2 = n3 ≡ n , NST

1 = NST
3 ≡ ∆N . (5.3)

Then we have

M = n2(3N2 − 4nJ) (5.4)

and the charges of physical black rings satisfy: 3N2 ≥ 4nJ .

Let ∆n denote the dipole charge of the tube and ∆J its angular momentum. The new

horizon area parameter, M̃, after the merger is then

M̃ = 4nN (n+ ∆n)(N + ∆N) + 2n2(N + ∆N)2 − (n+ ∆n)2N2

−2n2(N + ∆N)2 − 4n2(n+ ∆n)(J + ∆J)

= M + n∆n(3N2 − 4nJ) (5.5)

−(n+ ∆n)

∆n

[
(2n∆N −N∆n)2 + 4n2∆n

(
∆J − (∆N)2

∆n

)]
.

We now need to remember that the angular momentum of the tube is given by (C.34)

∆J =
(∆N)2

∆n
, (5.6)
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and also that that for the charges we consider the merger condition (4.55) becomes

2n∆N = ∆nN . (5.7)

Using these two equations, we finally have

∆M ≡ M̃−M = n∆n(3N2 − 4nJ) ≥ 0 , (5.8)

with equality if and only if the original black ring has vanishing horizon area. Hence, for

mergers with ν = −1 or x = ±1, we have proved that chronology is protected, and that

the second law of black hole thermodynamics holds. This conclusion is similar to that

of [43, 44, 46] for supertube-black hole mergers.

However for ν 6= −1 the situation is rather more subtle. First, the complete supergrav-

ity solution is not known for mergers in which the supertube winds around an S1 in the

S2 of the horizon. As a result we cannot identify the supertube DBI charges with simple

supergravity charges. In addition it is not clear how to identify directly the charges carried

across the horizon during the merger. If one simply chooses one of the patches discussed

above and assumes that the supertube carries its constituent DBI or GH charges across the

horizon then the x-dependence in the merger condition (4.49) can lead to mergers in which

the horizon area of the black ring decreases, thus contradicting black hole thermodynamics.

The most likely solution to this conundrum is that the charges carried by the supertube

across the horizon are not the same as the constituent supertube charges N
ST
, J

ST
, but are

modified in an x-dependent way, so as not to decrease the horizon area. This would imply

that in ν 6= −1, x 6= ±1 mergers the supertube brings in not only its intrinsic charges,

but also some of the charge and angular momentum dissolved in supergravity fluxes. Since

it is unclear how the dynamics of this charge can be captured via a Born-Infeld analysis,

we believe that the understanding of this phenomenon and a resolution of this puzzle will

probably come from finding the fully back-reacted supergravity solution corresponding to

the ν 6= −1 mergers.16

5.2 Mergers of black rings with three-charge two-dipole-charge supertubes

Another interesting example for illustrating chronology protection is the merger of a three-

charge two-dipole charge supertube with another supertube of the same kind, that can also

be thought of as a singular black ring that has one zero dipole charge nBR
3 = 0. Such a

singular black ring must have vanishing horizon area, and to avoid closed timelike curves

it must satisfy the charge condition [56]:

nBR
1 NBR

1 = nBR
2 NBR

2 . (5.9)

Similarly, the three-charge supertube considered above has no NS5 dipole charge (n3 = 0)

and also satisfies

nST
1 NST

1 = nST
2 NST

2 . (5.10)

16Such mergers do not have a tri-holomorphic U(1) invariance and hence the supergravity solution will

be more complicated than the solutions with a Gibbons-Hawking base presented here.
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Since the merger produces another two-dipole three-charge tube, it must also satisfy the

regularity condition:

(
nBR

1 + nST
1

) (
NBR

1 +NST
1

)
−
(
nBR

2 + nST
2

) (
NBR

2 +NST
2

)
= 0 , (5.11)

which is equivalent to

nBR
1 NST

1 + nST
1 NBR

1 −
(
nBR

2 NST
2 + nST

2 NBR
2

)
= 0 . (5.12)

On the other hand, the merger condition (4.68) for nBR
3 = 0 yields:

(
nBR

1 NST
1 + nBR

2 NST
2

)
−
(
nST

1 NBR
1 + nST

2 NBR
2

)
= 0 . (5.13)

To establish chronology protection one must show that (5.13) implies (5.12).

However, one also knows that the two merging objects obey (5.9) and (5.10). Multi-

plying (5.13) by nBR
2 nST

2 and using (5.9) and (5.10) one obtains:

(
nBR

2 NST
1 − nST

2 NBR
1

) (
nST

1 nBR
2 + nST

2 nBR
1

)
= 0 . (5.14)

Similarly, one finds that (5.12) is equivalent to

(
nBR

2 NST
1 − nST

2 NBR
1

) (
nST

1 nBR
2 − nST

2 nBR
1

)
= 0 . (5.15)

Since all the n’s are positive, we see that (5.14) implies (5.15) and so the merger condi-

tion (5.13) implies that the regularity condition (5.12) is satisfied. Hence, the merger of

two three-charge two-dipole charge supertubes always respects chronology protection.

We can also consider a merger of a three-charge two-dipole charge supertube with a

fully fledged black ring, we take for simplicity equal charges and dipoles: nBR
1 = nBR

2 =

nBR
3 = n, NBR

1 = NBR
2 = NBR

3 = N , NST
1 = NST

2 = NST
3 = ∆N and nST

1 = nST
2 = ∆n.

The non-negativity of the initial black ring entropy implies that 3N2 ≥ 4nJ and the merger

condition17 becomes 3n∆N = 2∆nN . Also remembering that angular momentum of the

three-charge supertube is given by

JST =
NST

1 NST
3

nST
2

=
NST

2 NST
3

nST
1

(5.16)

and hence ∆J = ∆N2/∆n, we obtain

∆M ≡ M̃−M =
4

9
(7N2 − 9nJ) (2n∆n+ ∆n2) . (5.17)

Since N2 ≥ 4
3nJ this merger is always irreversible, and does not violate chronol-

ogy protection.

17We consider ν = −1 tubes in the c = −1 patch; all the subtleties having to do with changing patches

are the same as for two-charge supertubes.
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6 Fluctuating supertubes and entropy enhancement

This section is devoted to an in-depth review of the Born-Infeld calculation of the entropy

coming from the shape modes of supertubes, as well as to an extension of this calculation

to a supertube in a black-ring background. This calculation demonstrates that one can

equally obtain an enhanced entropy from fluctuations along the compact internal directions

of the solution and fluctuations in the non-compact directions of the solution. Furthermore,

as we have shown in the previous sections of this paper, we expect the latter supertube

fluctuations to give rise to smooth horizonless solutions. Hence, our analysis strongly sup-

ports the existence of smooth horizonless three-charge solutions that depend on arbitrary

continuous functions, and whose entropy is much larger than their typical charge, and

might even be as large as the square root of the cube of their charge. That is, it might be

black-hole-like.

Our goal is to quantize the small oscillations about round two-charge supertubes in

flat space, black-hole, black-ring, and generic three-charge backgrounds, and to examine

the entropy coming from these fluctuations. We find it convenient to work in the D0-D4-F1

duality frame, and our approach follows that of [2, 13] (see also [57]).

We begin by reviewing the Marolf-Palmer entropy calculation for a supertube in flat

space, and in the following subsections extend this calculation for a supertube in a 3-charge

black hole background and in a black ring background. In the last subsection we also

include, for completeness, the entropy calculation in the background of a general solution

with a Gibbons-Hawking base space [13].

As first reported in [13], in the latter two backgrounds we find a non-trivial enhance-

ment of the entropy of a supertube when the dipole magnetic fields are large. This en-

hancement arises because the entropy that can be stored in a supertube is governed not by

the electric charges of the supertube (as in flat space or in a black hole background) but by

its locally-defined effective charges, that can get large contributions from the interactions

of the dipole moment of the supertube with the magnetic fluxes of the background.

6.1 Flat space

In the absence of background fluxes, the WZ action of the supertube is zero, and the DBI

action (4.7) reduces to

S = −TD2

∫
dtdzdθ

√
R2(1 −F2

tz) + F2
zθ , (6.1)

where R is the radius of the supertube and its embedding is

t = ξ0 , z = ξ1 , ϕ1 = θ . (6.2)

The charges of the tube are given by (4.12):

NST
1 = nST

2 Fzθ , NST
3 = nST

2

R2

Fzθ
, (6.3)

– 32 –



J
H
E
P
0
7
(
2
0
0
9
)
1
0
6

where the factors of nST
2 come from multiple windings in θ. Similarly the radius rela-

tion (4.17) reduces to:

NST
1 NST

3 =
(
nST

2

)2
R2 . (6.4)

The angular momentum of the supertube is (C.12):

J =
NST

1 NST
3

nST
2

= nST
2 R2 . (6.5)

The foregoing results apply to round (maximally spinning) supertubes. Supertubes of

arbitrary shape will have more complicated expressions for their conserved quantities and

will generically have smaller angular momentum.

In this subsection we will perform a simplified version of the analysis in [2], which

will be enough to give us the correct dependence of the entropy on the supertube charges.

We consider small fluctuations of the supertube in the six directions transverse to its

world-volume:

xi → xi + ηi(t, θ) , i = 1, . . . , 6 , (6.6)

where four of these fluctuations take place on the compact T 4 and the other two are radial

coordinates in the non-compact space. In general there are eight independent fluctuation

modes for the supertube, consisting of seven transverse coordinate motions and a charge

density fluctuation (which also affects the shape). To keep the computations simple here,

we have restricted to a representative sample of oscillations in both the compactification

space and in the space-time. Since we are only interested in BPS fluctuations we will also

restrict ηi to depend only upon t and θ [2].18

The effective Lagrangian for the fluctuations is obtained by expanding the DBI La-

grangian of the supertube

Lη = −TD2

[
(1 −F2

tz − η̇iη̇i)(R
2 + η′iη

′
i) − 2FtzFzθη̇iη

′
i + F2

zθ(1 − η̇iη̇i) + (η̇iη
′
i)

2
]1/2

,

(6.7)

where the repeated index i is summed over. The canonical momenta conjugate to ηi are:

Πi =

∫ 2πLz

0
dz

∂Lη

∂η̇i

∣∣∣∣
η̇i=0 ,Ftz=1

=
1

2π
η′i , (6.8)

and the canonical commutation relations are:

[ηj(t, θ),Πk(t, θ
′)] = iδjkδ(θ − θ′) . (6.9)

The BPS modes ηi then can be expanded as:

ηi =
1√
2

[
∑

k>0

eikθ/nST
2

(ai
k)

†

√
|k|

+ h.c.

]
(6.10)

18The time dependent modes will break supersymmetry. Hence, we will retain the time dependence of ηi

to compute momenta and quantize the system but then we will set ∂tηi ≡ η̇i = 0.
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where (ai
k)

† and ai
k are creation and annihilation operators for the kth harmonic. The

normalization has been chosen such that:19

[(
ai

k

)†
, aj

k′

]
= δijδk,k′ (6.11)

It is not hard to see that the fluctuations do not change NST
1 and the angular momentum

J . The charge NST
3 becomes:

NST
3 =

1

TF1

∫ 2πnST
2

0
dθ

∂L
∂Ftz

∣∣∣∣
Ftz=1

=
TD2

TF1

∫ 2πnST
2

0
dθ

(R2 + η′iη
′
i)

Fzθ
, (6.12)

from which one finds

6∑

i=1

∑

k>0

k(ai
k)

†ai
k = LzTD2

∫ 2πnST
2

0
dθ

∫ 2πnST
2

0
dθ′

6∑

i=1

η′iη
′
i (6.13)

= NST
1 NST

3 − (nST
2 )2R2 = NST

1 NST
3 − nST

2 J . (6.14)

The left hand side of this expression can be thought of as the energy of a system of

six massless bosons in (1+1) dimensions. Due to supersymmetry there will also be six

corresponding fermionic degrees of freedom. The total central charge of the system is thus

c = 9, and so the entropy of this system is given by the Cardy formula:

S = 2π

√
c

6

√
NST

1 NST
3 − nST

2 J = 2π

√
3

2

√
NST

1 NST
3 − nST

2 J . (6.15)

If we had included all eight bosonic fluctuation modes then we would have had eight bosons

and eight fermions and hence a theory with c = 12 and with the entropy:

SST = 2π
√

2
√
NST

1 NST
3 − nST

2 J . (6.16)

This is the correct central charge and it yields the correct supertube entropy [2]. By

restricting our analysis to six of the shape modes and ignoring the other supersymmetric

modes we have obtained a finite, but well understood, fraction of the supertube entropy.

Since our purpose here is to analyze when entropy enhancement happens, and when it

does not, we will only be interested on the dependence of the supertube entropy on the

macroscopic charges, and not pay particular attention to numerical coefficients. Restricting

our analysis in more general backgrounds to transverse BPS fluctuations and counting the

entropy coming from these modes will therefore be enough to illustrate the physics of

entropy enhancement.

19Technically, to get this normalization correct we need to include the mode expansion of the non-BPS

modes in (6.10). Ignoring the non-BPS modes gives an incorrect factor of
√

2 in the normalization of the ηi.

Here we have given the correctly normalized expressions that one would obtain if one included the non-BPS

modes.
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6.2 The three-charge black hole

A two-charge round supertube in the background of a three-charge BPS rotating (BMPV)

black hole was discussed in section 4.1. Here we will use the metric and background fields

presented in section 4.1 and consider small shape fluctuations in the directions transverse

to the world-volume of the supertube. We are again interested only in BPS excitations,

which have the following form

xi → xi + ηi(t, θ) , i = 1, 2, 3, 4 , u→ u+ η5(t, θ) , v → v + η6(t, θ) , (6.17)

where we have defined the metric on the four-torus to be

ds2T 4 = dx2
1 + dx2

2 + dx2
3 + dx2

4 . (6.18)

and the supertube embedding is the same as (6.2). One can use the sum of the DBI and WZ

actions, find an effective action for the supertube fluctuations and compute the momenta

conjugate to η5, η6 and ηi:

Πη5 =

∫
dz

(
∂L
∂η̇5

)∣∣∣∣
BPS

=
Z2

2π
η′5 , (6.19)

Πη6 =

∫
dz

(
∂L
∂η̇6

)∣∣∣∣
BPS

=
Z2

2π
η′6 , (6.20)

Πηi
=

∫
dz

(
∂L
∂η̇i

)∣∣∣∣
BPS

=
1

2π
η′i , (6.21)

where the subscript “BPS” means that we have evaluated everything “on shell,” which

means we have imposed the BPS conditions of no time dependence and Ftz = 1.

The BPS modes ηi, η5 and η6 then can be expanded as

ηi =
1√
2

[
∑

k>0

eikθ/nST
2

(ai
k)

†

√
|k|

+ h.c.

]
,

η5 =
1√
2

[
∑

k>0

eikθ/nST
2

(a5
k)

†

√
|k|

+ h.c.

]
,

η6 =
1√
2

[
∑

k>0

eikθ/nST
2

(a6
k)

†

√
|k|

+ h.c.

]
.

(6.22)

At first glance, the physics of the ηi fluctuations along the torus appears very different from

that of the fluctuations in the spacetime direction, η5 and η6; indeed the latter have a factor

of Z2 in the denominator, and this factor becomes arbitrarily large when the supertube is

near the horizon of a black hole.

The charge NST
1 is the same as that of the round supertube, but the charge NST

3 is

modified to:

NST
3 =

1

TF1

∫
dθ

∂L
∂Ftz

∣∣∣∣
BPS

=
TD2

TF1Fzθ

∫
dθ

(
Z2u

2 + Z21
[
(η′5)

2 + (η′6)
2
]
+

4∑

i=1

(η′i)
2

)
.

(6.23)
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Using similar arguments to those given for the flat space background one finds the entropy

of the BPS shape modes to be:

S = 2π

√
3

2

√
NST

1 NST
3 − (nST

2 )2Z2u2 . (6.24)

Hence, despite the presence of the warp factor Z2 in the radius relation and in the mode

expansions (6.22), the entropy of the supertube depends on its charges in exactly the same

way as in flat space, and hence there is no entropy enhancement.

6.3 The three-charge black ring background

We now consider small shape fluctuations around the round supertube in a black ring

background presented in section 4.2. The important new element is that this background

has non-zero magnetic dipole charges and these will enter the calculation in some very

non-trivial ways.

Again we consider the fluctuations (6.17) and use the DBI and WZ actions to find an

effective action for the fluctuations. After straightforward calculations on can compute the

momenta conjugate to η5, η6 and ηi:

Πη5 =

∫
dz

(
∂L
∂η̇5

)∣∣∣∣
BPS

=
Z2

2π

R2

(y2 − 1)(x− y)2
η′5 , (6.25)

Πη6 =

∫
dz

(
∂L
∂η̇6

)∣∣∣∣
BPS

=
Z2

2π

R2

(1 − x2)(x− y)2
η′6 , (6.26)

Πηi
=

∫
dz

(
∂L
∂η̇i

)∣∣∣∣
BPS

=
1

2π
η′i , (6.27)

The BPS modes ηi, η5 and η6 can be expanded as:

ηi =
1√
2

[
∑

k>0

eikθ/nST
2

(ai
k)

†

√
|k|

+ h.c.

]
,

η5 =

√
(y2 − 1)(x− y)2

2Z2R2

[
∑

k>0

eikθ/nST
2

(a5
k)

†

√
|k|

+ h.c.

]
,

η6 =

√
(1 − x2)(x− y)2

2Z2R2

[
∑

k>0

eikθ/nST
2

(a6
k)

†

√
|k|

+ h.c.

]
.

(6.28)

Suppose that we have a round supertube parallel to the ring (t = ξ0, z = ξ1, ϕ1 = −θ),
then for the F1 charge of the supertube one finds

NST
3 =

1

TF1

∫ 2πnST
2

0

(
∂L
∂Ftz

)∣∣∣∣
BPS

(6.29)

=
TD2

TF1
nST

2 n1(1 + y) +
TD2

TF1(Fzθ − n3
2 (1 + y))

[
Z2R

2(y2 − 1)

(x− y)2
(6.30)

+ Z2
R2

(y2 − 1)(x− y)2
(η′5)

2 + Z4
R2

(1 − x2)(x− y)2
(η′6)

2 + (η′iη
′
i)

]
. (6.31)
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The expression for the entropy coming from the shape oscillations now becomes:

S = 2π

√
3

2

{[
NST

1 − 1

2
nST

2 n3(1 + y)

] [
NST

3 − 1

2
nST

2 n1(1 + y)

]
− (nST

2 )2
Z2R

2(y2 − 1)

(x− y)2

} 1
2

(6.32)

Note that for a supertube located near the black ring (y → −∞) one has a huge entropy

enhancement due to the dipole-dipole interaction.

For completeness, it is equally easy to consider a round supertube orthogonal to the

black ring (t = ξ0, z = ξ1, ϕ2 = −θ). One then finds that the entropy of the shape

modes is:

S = 2π

√
3

2

{[
NST

1 +
1

2
nST

2 n3(x+ c)

] [
NST

3 +
1

2
nST

2 n1(x+ c)

]
− (nST

2 )2
Z2R

2(1 − x2)

(x− y)2

} 1
2

(6.33)

While there is still a dipole-dipole interaction, the entropy enhancement does not grow

arbitrarily large because the coordinate x has a finite range (x ∈ (−1, 1)).

6.4 Solution with a general Gibbons-Hawking base

For the sake of completeness, it is worth reviewing also the entropy enhancement for a

supertube in a three-charge background with a Gibbons-Hawking base. For this back-

ground, one can only calculate easily the entropy coming from the internal fluctuations of

the supertube. The entropy coming from fluctuations of the supertube in the spacetime

directions is more complicated than for the black ring background.

For this background the supertube action becomes:

S = TD2

∫
d3ξ

{[(
1

Z1
− 1

)
Fzθ +

K3

Z1V
+

(
µ

Z1
− K1

V

)
(Ftz − 1)

]
(6.34)

−
[

1

V 2Z2
1

[
(K3 − V (µ(1 −Ftz) −Fzθ))

2 + V Z1Z2(1 −Ftz)(2 − Z3(1 −Ftz))
]]1/2}

.

Because of the complexity of this background, we consider small shape oscillations in the

compactification manifold, T 4, around a round supertube along the GH fiber :

t = ξ0 , z = ξ1 , ψ = θ , xi → xi + ηi(t, θ) i = 1, 2, 3, 4 . (6.35)

The quantization proceeds exactly as before and the conserved electric charges are now:

NST
1 =

TD2

TD0

∫ 2πLz

0
dz

∫ 2πnST
2

0
dθFzθ = nST

2 Fzθ ,

NST
3 =

TD2

TF1

∫ 2πnST
2

0
dθ

[
−K

1

V
+

1

Fzθ + V −1K3

(
Z2

V
+

4∑

i

(η′i)
2

)]
. (6.36)

Substituting (6.28) into (6.36) and rearranging using (6.36) leads to:

4∑

i=1

∑

k>0

k(ai
k)

†ai
k = LzTD2

∫ 2πnST
2

0
dθ

∫ 2πnST
2

0
dθ

4∑

i=1

η′iη
′
i

=

[
NST

1 + nST
2

K3

V

] [
NST

3 + nST
2

K1

V

]
− (nST

2 )2
Z2

V
. (6.37)
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and this leads to the following expression for the entropy:

S = 2π

√[
NST

1 + nST
2

K3

V

] [
NST

3 + nST
2

K1

V

]
− (nST

2 )2
Z2

V
. (6.38)

6.5 Comments on the supertube effective charges

As we have seen, in flat space and in a BMPV black hole background, the entropy of the

two-charge supertube, when expressed in terms of its charges, is simply

S ∼
√
Q1Q3 − J . (6.39)

However, if the background has non-trivial dipole magnetic fields the entropy is given by

equations (6.33) and (6.38), and can be written as:

S ∼
√
Qeff

1 Qeff
3 − Jeff . (6.40)

Here the effective charges, Qeff
I and Jeff , involve a non-trivial interaction between the

dipoles of the supertube and the dipoles of the background. These effective charges

can become arbitrarily large if the supertube moves suitably close to the background

dipole sources.

From the perspective of the supertube DBI-WZ action, these effective charges are:

Qeff
1 ≡ QST

1 + nST
2 ξ̃(1) , Qeff

3 ≡ QST
3 + nST

2 ξ̃(2) , (6.41)

where the ξ(I) are defined in (2.9) and ξ̃(I) denotes the pull-back onto the supertube.

There is another way to think about these effective charges when considering the fully

back-reacted solution found for a round supertube in GH backgrounds [13] — they give

the leading divergence of the warp factors ZI near the supertube:

Qeff
I ≡ 4 lim

rN→0
rN ZI , I = 1, 3 , (6.42)

where the supertube is located at rN = 0. Nicely enough, even if the DBI-WZ action of the

supertube is perturbative, it does capture these effective charges via the pull back in (6.41).

As discussed in [13], the crucial insight coming from this analysis is that the entropy of

the supertube is not determined in terms of its asymptotic charges (measured at infinity)

but in terms of its local effective charges, which depend on the location of the supertube.

Hence, the entropy can become very large when the magnetic fields are very strong — this

happens for example when the supertube is near the horizon of a black ring, or when it is

in a deep scaling horizonless solution [37, 59–61].

Our analysis also demonstrates that entropy enhancement affects both the fluctuations

of the supertube in the internal (torus) directions, as well as the fluctuations of the super-

tube in the non-compact transverse space. In a general three-charge background the latter

are very hard to analyze, as the non-trivial magnetic field mixes the fluctuation modes.

However, in a black ring background this mixing is not present for the supertube fluctu-

ations in the plane transverse to the ring. Our calculation shows that these fluctuations
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exhibit the same amount of entropy enhancement as the torus fluctuations, and hence

indicate that entropy enhancement is a feature of all the supertube modes, and not just

some. It would be interesting to calculate whether, in a general background, some modes

are more enhanced than others, as this would indicate whether the typical microstates of

“enhanced” fluctuating supertubes are smooth in supergravity or not. It will be also very

interesting to extend our analysis to non-supersymmetric gravity solutions [62, 63].

7 Conclusions

Our purpose in this paper has been four-fold:

First, we proved that if one takes supertubes that are solutions of the Born-Infeld action

to a regime of parameters where their back-reaction is important, the fully back-reacted

supergravity solution is smooth in the duality frame where the supertubes have D1 and D5

electric charges. The two conditions necessary for the supergravity solution to be free of

closed timelike curves and to be smooth are reproduced exactly by the Born-Infeld analysis.

Our analysis strengthens the case for the existence of families of supergravity solutions

that have the same charges as black holes, and that depend on arbitrary continuous func-

tions (and hence have a moduli space of infinite dimension). Furthermore, these solutions

are smooth and horizonless in the regime of parameters in which the corresponding black

hole has a macroscopic horizon.

The second purpose of the paper has been to identify the relation between the charges

of supertubes and black rings that appear in the exact supergravity description, and those

that appear in the microscopic (Born Infeld) description.

We have seen in section 4.7 that a given five-dimensional black ring can be embedded

in Taub-NUT in two ways, that differ from each other by the choice of the location of the

Dirac string in the gauge potentials. One can furthermore find black ring embeddings with

multiple Dirac strings, that depend on several parameters, and these can be related to each

other by gauge transformations. The Gibbons-Hawking charges of the black ring, which

give the electrical charges of the corresponding four-dimensional black hole, are different in

different patches (4.37), (4.38). Nevertheless, the E7(7) quartic that gives the microscopic

entropy of the black ring, is independent of the choice of patch.

It is interesting to note that the entropy of extremal non-BPS black rings has been

recently expressed in terms of the E7(7) quartic invariant as a function of the asymptotic

charges, and a certain angular momentum parameter J [55]. Our analysis establishes

that the apparent four-dimensional charges (that appear in this invariant) depend on the

location of the Dirac string, and that one can switch between the asymptotic charges of the

ring and the intrinsic charges by a gauge transformation. This transformation nevertheless

also changes the angular momentum parameter, and thus the question that should be asked

in trying to find the microscopic description of extremal non-BPS black rings is not “Why

does a certain charge appear in the quartic invariant?” but rather “Why, for a given choice

of charges, does a certain angular momentum parameter appear in the quartic invariant?”

We have also found the relation between the charges of supertubes that appear in their

Born-Infeld description, and those that appear in their supergravity description. We have
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established that if a supertube that gives rise to a solution with a Gibbons-Hawking base

is put at a smooth location,20 its Born-Infeld electric charges are equal to the Gibbons-

Hawking charges of the supergravity solution. Since the Gibbons-Hawking charges are the

ones that contributes to the asymptotic charge of a solution, and since these charges are

much smaller than the enhanced charges (that give the supertube entropy in a three-charge

background) our analysis definitively establishes the phenomenon of entropy enhancement:

a given two-charge supertube in a three-charge two-dipole charge background has an en-

tropy much larger than one would expect from the amount of charge visible from infinity.

The third aim of our paper has been to analyze issues related to black-hole thermo-

dynamics and chronology protection when a supertube is merged with a black ring. If

supertubes respect the triholomrphic U(1) isometry of the ring, and are able to merge with

a black ring, then this neither decreases the ring entropy nor creates closed timelike curves.

The supertubes that might do this, and hence are “dangerous” for chronology protection

and thermodynamics, are unable to merge with the ring.

The situation is a bit more subtle with supertubes that do not respect the triholo-

morphic U(1) isometry of the ring, and wind around S1 latitude circles in the S2 of the

black ring horizon. We have found that if the charge these supertubes carry into a black

ring is given by their Born-Infeld charge, then chronology protection and black-hole ther-

modynamics can be violated! The only way these are not violated is if the charge brought

into the black ring depends continuously on the angle at which the supertube merges with

the ring (which is the angle of the S1 latitude circle it wraps). It would be interesting

to understand the origin of this very puzzling fact, by constructed the fully back-reacted

solution corresponding to this merger. This solution will have a U(1) isometry, but not a

triholomorphic one, and will hence not be a Gibbons-Hawking solution, but a more general

one of the type constructed in [41, 46, 64].

The fourth aim of the paper was to extend the entropy enhancement calculation of [13]

to supertubes that oscillate both in the internal compact directions and in spacetime non-

compact directions. Such a calculation is generically quite complicated: if a solution de-

pends on these directions, this mixes the corresponding oscillator modes of the supertube,

which makes the counting much more involved. Nevertheless, we have found a class of ex-

amples in which this mixing is not present, and the calculation of the entropy coming from

the spacetime modes of the supertube is as simple as that coming from the internal modes.

Our results show that the two kind of modes contribute to the enhanced entropy

equally, despite the presence of different (large) factors in the mode expansions. If, as we

expect, the entropy coming from these fluctuations will be black-hole-like, and therefore

the fluctuating supertubes will give the typical microstates of the corresponding black

hole, these microstates will have a non-trivial transverse size, and the smooth horizonless

microstates will act as representatives for all the black hole microstates [13, 18].

The obvious question left unanswered by our analysis is what is the enhanced entropy

coming from the modes that mix. This question requires a more tedious analysis than we

have done, but its answer could have dramatic consequences. If this enhanced entropy is

20More precisely, not exactly on top of a Dirac string.
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equal or less than that coming from the internal modes, then most likely the typical black-

hole microstate geometries will be given by a combination of internal and transverse space

oscillations, which in general will not be smooth (but may have smooth representatives).

However, if the entropy coming from the transverse modes that mix is greater than the

one coming from the internal directions, then the typical microstates might all be given by

smooth horiozonless supergravity solutions.

To recapitulate, we have proven that the supergravity and the Born Infeld descriptions

of supertube agree, found the four-dimensional charges of five-dimensional black rings and

supertubes, analyzed chronology protection and black hole thermodynamics during black-

ring supertube mergers, and established that the entropies of supertube modes in the

internal directions in the spacetime directions are enhanced equally, and hence these modes

contribute equally to the entropy of the supertube.

We have also filled in a few details in the analysis of supertubes and black rings

solutions: we have dualized the black ring and the more general multi-center solutions

with a Gibbons-Hawking base to various duality frames (in appendix A), and have found

(to our knowledge for the first time) the exact form of the magnetic potentials in these

solutions. We have also calculated (in appendix C) the angular momenta of a supertube of

arbitrary shape in a general solution with an R
4 base, and shown that the contribution of

a piece of an arbitrarily-shaped supertube to the angular momentum along the direction

of this piece is the same as for a piece of a circular supertube, and is in fact a universal

quantity, as suggested also by the supergravity analysis.

Last, but not least, we have shown (in appendix B) that all the three-charge, three-

dipole charge solutions with a Gibbons-Hawking base constructed so far can be dualized

to the duality frame where they have D1, D5 and momentum charges, and can be scaled21

in such a way as to become asymptotically AdS3 × S3. Hence all these smooth horizonless

solutions are dual via the AdS/CFT correspondence to microstates of the D1-D5 CFT. It

would be very interesting to extend the holographic methods of [19] (that were successfully

used in [7] for two-charge microstates) to the analysis of these three-charge geometries.

This would enable one to establish whether the geometries constructed so far are dual to

typical CFT microstates, whether the geometries dual to these microstates have Planck-

scale curvature or are well-described in supergravity, and whether the smooth microstate

geometries constructed so far can act as representatives of the typical microstates.
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A Three charge solutions and T-duality

A.1 T-duality transformations

In this appendix we summarize the T-duality transformation rules for type II theories with

non-zero RR fields. These rules are derived in [65] and can be considered a generalization of

the Buscher rules [66]. In the expressions below we will adopt the conventions and notation

of [67], the different RR forms are denoted with C(n) and the fields obtained after the T-

duality transformations are denoted with a tilde, w = x9 is the M-theory compactification

direction and x is the T-duality direction.

The set of fields in the low energy limit of M-theory, i.e. eleven-dimensional super-

gravity, are:

Gµν and Aµνρ . (A.1)

After the compactification along w = x9 we are left with type IIA supergravity with

the fields

gµν , C(3)
µνρ, Bµν , C(1)

µ , Φ , (A.2)

which are related to the eleven-dimensional fields as follows (note that we are working in

string frame):

gµν =
√
Gww

(
Gµν +

GµwGνw

Gww

)
, C(1)

µ =
Gµw

Gww
,

C(3)
µνρ = Aµνρ , Bµν = Aµνw , Φ =

3

4
log(Gww) . (A.3)

The type IIB fields are:

gµν , Bµν , Φ, C(0), C(2)
µν , C(4)

µνρσ . (A.4)

The T-duality rules for the metric and the NS-NS fields are:

g̃xx =
1

gxx
, g̃µx =

Bµx

gxx
, g̃µν = gµν − gµxgνx −BµxBνx

gxx
,

B̃µx =
gµx

gxx
, B̃µν = Bµν − Bµxgνx − gµxBνx

gxx
, Φ̃ = Φ − 1

2
log gxx . (A.5)

The RR forms transform under T-duality as:

C̃
(n)
µ...ναx = C

(n−1)
µ...να − (n− 1)

C
(n−1)
[µ...ν|xg|α]x

gxx
,

C̃
(n)
µ...ναβ = C

(n+1)
µ...ναβx + nC

(n−1)
[µ...ναBβ]x + n(n− 1)

C
(n−1)
[µ...ν|xB|α|xg|β]x

gxx
.

(A.6)
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0 1 2 3 4 5 6 7 8 9 10

(D1) M2 l • • • • l l ↔ ↔ ↔ ↔
(D5) M2 l • • • • ↔ ↔ l l ↔ ↔
(P) M2 l • • • • ↔ ↔ ↔ ↔ l l
(d5) M5 l yµ(φ) yµ(φ) yµ(φ) yµ(φ) ↔ ↔ l l l l
(d1) M5 l yµ(φ) yµ(φ) yµ(φ) yµ(φ) l l ↔ ↔ l l

(kkm) M5 l yµ(φ) yµ(φ) yµ(φ) yµ(φ) l l l l ↔ ↔

Table 1. The configuration of branes in M-theory that preserves the four supersymmetries of the

M2-M2-M2 three-charge black hole [20]. The vertical arrows represent the directions along which

the branes are extended and the horizontal arrows represent smearing directions. The functions

yµ(φ) describe a closed curve which is wrapped by the M5 branes. In the first column we have

indicated also the brane identification in the D1-D5-P duality frame.

Alternatively one can transform the RR field strengths as follows (for a detailed derivation

of these rules see appendix A of [7])

F̃ (n)
µ1...µn−1x = F (n−1)

µ1...µn−1
+ (n− 1)(−1)n

gx[µ1
F

(n−1)
µ2...µn−1]x

gxx
,

F̃ (n)
µ1...µn

= F (n+1)
µ1...µnx − n(−1)nBx[µ1

F
(n−1)
µ2...µn] − n(n− 1)

Bx[µ1
gµ2|x|F

(n−1)
µ3..µn]x

gxx
. (A.7)

We now give the explicit transformations that take us from the M-theory duality frame

in section 2, to solutions in other useful duality frames. In table 1 we specify the directions

along which the M2 branes and the M5 branes are wrapped or smeared.

A.2 Three charge solutions in different duality frames

Compactification along x9. The first step is to compactify the eleven-dimensional

solution, presented in section 2, along x9, in this way we obtain the following combination

of “electric”22

N1 : D2 (56) N2 : D2 (78) N3 : F1 (z) (A.8)

and “dipole” branes

n1 : D4 (y78z) n2 : D4 (y56z) n3 : NS5 (y5678) (A.9)

in Type IIA. From now on we will denote x10 = z. The ten-dimensional string frame

metric is

ds210 = − 1

Z3

√
Z1Z2

(dt+k)2 +
√
Z1Z2ds

2
4+

√
Z1Z2

Z3
dz2+

√
Z2

Z1
(dx2

5+dx2
6)+

√
Z1

Z2
(dx2

7+dx2
8)

(A.10)

22We are choosing x9 to be the M-theory circle in order to match the conventions in the literature for

the global signs of the B-field and the RR potentials for the BMPV black hole [47] and the supersymmetric

black ring solutions [42].
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The dilaton and the Kalb-Ramond field are

Φ =
1

4
log

(
Z1Z2

Z2
3

)
, B = −A(3) ∧ dz . (A.11)

The RR (“electric”) forms are

C(1) = 0 , C(3) = A(1) ∧ dx5 ∧ dx6 +A(2) ∧ dx7 ∧ dx8 , (A.12)

and the four-form field strength is23

F̃ (4) = dC(3) + dB ∧ C(1) = A(1) ∧ dx5 ∧ dx6 + dA(2) ∧ dx7 ∧ dx8 (A.13)

= dF (1) ∧ dx5 ∧ dx6 + F (2) ∧ dx7 ∧ dx8 , (A.14)

where we have used the notation F (I) = dA(I). Now we will perform a chain of T-dualities

in order to arrive at the desired frame.

T-duality along x5. A T-duality along the x5 direction brings us to Type IIB with the

following sets of “electric”

N1 : D1 (6) N2 : D3 (578) N3 : F1 (z) (A.15)

and “dipole” branes

n1 : D5 (y578z) n2 : D3 (y6z) n3 : NS5 (y5678) . (A.16)

The metric is

ds210 = − 1

Z3

√
Z1Z2

(dt+k)2 +
√
Z1Z2ds

2
4 +

√
Z1Z2

Z3
dz2 +

√
Z2

Z1
dx2

6 +

√
Z1

Z2
(dx2

5 +dx2
7+dx2

8) .

(A.17)

The other NS-NS fields are

Φ =
1

4
log

(
Z2

1

Z2
3

)
, B = −A(3) ∧ dz . (A.18)

The RR field strengths are

F (3) = −F (1) ∧ dx6 ,

F̃ (5) = F (2) ∧ dx5 ∧ dx7 ∧ dx8 + ⋆10(F (2) ∧ dx5 ∧ dx7 ∧ dx8) , (A.19)

where in the expression for F̃ (5) we have added the Hodge dual piece by hand to ensure

self-duality [69]. Note that if one is working in the “democratic formalism” (i.e. with both

electric and magnetic field strengths) F̃ (5) will be automatically self-dual, however since

we have chosen to T-dualize explicitly only the electric field strengths we have to add the

self-dual piece by hand whenever we encounter a five-form field strength after T-dualizing

a four-form field strength.

23Note that we are using the notation of [68] eF (4) = dC(3) + dB ∧ C(1).
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Using the form of the ten-dimensional metric (A.17) one can show that

⋆10 (dA(2) ∧ dx5 ∧ dx7 ∧ dx8) = −
(

Z5
2

Z3
1Z

2
3

)1/4

⋆5 (dA(2) ∧ dz ∧ dx6) , (A.20)

where ⋆5 is the Hodge dual on the five-dimensional subspace given by the metric

ds25 = − 1

Z3

√
Z1Z2

(dt + k)2 +
√
Z1Z2ds

2
4 . (A.21)

T-duality along x6. Now perform T-duality along x6 to get

N1 : D0 N2 : D4 (5678) N3 : F1 (z) (A.22)

“electric”

n1 : D6 (y5678z) n2 : D2 (yz) n3 : NS5 (y5678) (A.23)

and “dipole” branes in Type IIA. The metric is

ds210 = − 1

Z3

√
Z1Z2

(dt+k)2+
√
Z1Z2ds

2
4+

√
Z1Z2

Z3
dz2+

√
Z1

Z2
(dx2

5+dx
2
6+dx

2
7+dx

2
8) . (A.24)

The dilaton and the Kalb-Ramond fields are

Φ =
1

4
log

(
Z3

1

Z2Z2
3

)
, B = −A(3) ∧ dz . (A.25)

The RR field strengths are

F (2) = −F (1) , F̃ (4) = −
(

Z5
2

Z3
1Z

2
3

)1/4

⋆5 (F (2)) ∧ dz . (A.26)

Since we are interested in studying probe two charge supertubes in this background, we

will also need the RR potentials since they enter the Wess-Zumino action of the supertube.

Finding the RR and NS-NS potentials in the D0-D4-F1 frame. If everything is

consistent, then the Bianchi identities for the field strengths should be satisfied. For the

solution given by (2.20)–(2.22), the non-trivial Bianchi identity is:24

dF̃ (4) = −F (2) ∧ dB . (A.27)

Indeed we can use the BPS equations to show that

dF̃ (4) = −d
((

Z5
2

Z3
1Z

2
3

)1/4

⋆5 (F (2))

)
∧ dz

= −
[
d

(
1

Z1Z3

)
∧ dk ∧ (dt+ k) − d

(
(dt + k)

Z1

)
∧ Θ3 (A.28)

−d
(

(dt + k)

Z3

)
∧ Θ1 + Θ3 ∧ Θ1

]
∧ dz .

24See [68] p. 86.
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On the other hand

F (2) ∧ dB = dA(1) ∧ dA(3) ∧ dz
=

[
d

(
1

Z1Z3

)
∧ dk ∧ (dt + k) − d

(
(dt + k)

Z1

)
∧ Θ3 (A.29)

−d
(

(dt+ k)

Z3

)
∧ Θ1 + Θ3 ∧ Θ1

]
∧ dz .

So the Bianchi identity is obeyed and it can be checked in a similar manner that the

equations of motion of type IIA supergravity are obeyed. Thus confirms the consistency of

our calculations.

We will now find the RR three-form potential C(3) in the same duality frame. It

satisfies the following differential equation

dC(3) ≡ F̃ (4) +C(1) ∧H(3) . (A.30)

Note that this depends upon a gauge choice for C(1), we choose a gauge in which C(1) is

vanishing at asymptotic infinity, namely25

C(1) = −A1 − dt . (A.31)

Computing explicitly one finds

dC(3) =
[(

− ⋆4dZ2 +B(1) ∧ Θ(3)
)
− d
(
Z−1

3 (dt+ k) ∧B(1) + dt ∧A(3)
)]

∧ dx5 , (A.32)

and hence

C(3) = −
(
γ + Z−1

3 (dt + k) ∧B(1) + dt ∧A(3)
)
∧ dx5 , (A.33)

where

dγ =
(
⋆4 dZ2 −B(1) ∧ Θ(3)

)
. (A.34)

So the calculation boils down to integrating for the 2-form γ. Up to this stage we have not

assumed any particular form of the four-dimensional base space. If this space is Gibbons-

Hawking then the equation for γ can be integrated explicitly. Using the BPS supergravity

solutions presented in section 2 it is not hard to show that

⋆4dZ2 −B(1) ∧ Θ(3) =
(
−∂aZ2 +K1∂a(V

−1K3)
) 1

2
ǫabc(dψ +A) ∧ dyb ∧ dyc

− ξ(1)a

(
∂b(V

−1K3)
)
(dψ +A) ∧ dya ∧ dyb

+ V
(
~ξ(1) · ~∇(V −1K3)

)
dy1 ∧ dy2 ∧ dy3 . (A.35)

Recall that Z2 = L2 + V −1K1K3 and define ~ζ by:

~∇× ~ζ ≡ −~∇L2 , (A.36)

then using

Ω
(a)
± = ê1 ∧ êa+1 ± 1

2
ǫabcê

b+1 ∧ êc+1 , (A.37)

25We have fixed ZI ∼ 1 + O(r−1).
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one can show that:

⋆4 dZ2 −B(1) ∧ Θ(3) = d
[(

− ζa − V −1K3ξ(1)a

)
Ω

(a)
−

]

−
(
V ~∇ · ~ζ +K3 ~∇ · ~ξ(1)

)
dy1 ∧ dy2 ∧ dy3 . (A.38)

The last term is a multiple of the volume form on R
3 and so is necessarily exact, however,

it can be simplified if we chose a gauge for ~ξ(1) and ~ζ:

~∇ · ~ζ = ~∇ · ~ξ(1) = 0 . (A.39)

Then one has:

γ = −
[(
ζa + V −1K3ξ(1)a

)
Ω

(a)
−

]
. (A.40)

Finally, let ~ri = (y1−ai, y2−bi, y3−ci) and let F ≡ 1
ri

and then define ~w by ~∇× ~w ≡ −~∇F ,

then the standard solution for ~w is:

w = −y3 − ci
ri

(y1 − ai) dy2 − (y2 − bi) dy1

((y1 − ai)2 + (y2 − bi)2)
. (A.41)

It is elementary to verify that ~∇ · ~w = 0 and so this is the requisite gauge. Finally the

explicit form of the RR three-form potential for a solution with GH base in the D0-D4-F1

frame is

C(3) =
(
ζa + V −1K3ξ(1)a

)
Ω

(a)
− ∧ dz −

(
Z−1

3 (dt + k) ∧B(1) + dt ∧A(3)
)
∧ dz . (A.42)

T-duality along z. Another T-duality along z transforms the system into D1-D5-P

frame with

N1 : D1 (z) N2 : D5 (5678z) N3 : P (z) (A.43)

“electric”

n1 : D5 (y5678) n2 : D1 (y) n3 : kkm (y5678z) (A.44)

and “dipole” branes. The metric is

ds2IIB = − 1

Z3

√
Z1Z2

(dt+k)2+
√
Z1Z2ds

2
4+

Z3√
Z1Z2

(dz+A3)2+

√
Z1

Z2
(dx2

5+dx
2
6+dx

2
7+dx

2
8) .

(A.45)

The dilaton and the Kalb-Ramond field are:

Φ =
1

2
log

(
Z1

Z2

)
, B = 0 . (A.46)

The RR three-form field strength (it is the only non-zero field strength) is:

F (3) = −
(

Z5
2

Z3
1Z

2
3

)1/4

⋆5 (F (2)) −F (1) ∧ (dz −A(3)) . (A.47)

For the supersymmetric black ring solution in D1-D5-P frame then our general result

agrees (up to conventions) with [42]. We can also easily find the RR 2-form potential by

T-dualizing (A.42)

C(2) =
(
ζa + V −1K3ξ(1)a

)
Ω

(a)
− −

(
Z−1

3 (dt+ k) ∧B(1) + dt ∧A(3)
)

+A(1) ∧ (A(3) − dz − dt) + dt ∧ (A3 − dz) . (A.48)

– 47 –



J
H
E
P
0
7
(
2
0
0
9
)
1
0
6

B BPS solutions in D1-D5-P frame and their decoupling limit

In this appendix we consider the decoupling limit of the three-charge metric in the D1-D5-P

duality frame (A.45). As shown in [15, 42], for a supersymmetric black ring, such a limit

takes an asymptotically-flat solution into a solution that is asymptotically AdS3×S3×T 4,

and is thus dual to a state or an ensemble of states in the D1-D5 CFT.

Like for three-charge black holes and black rings, one can take this limit by sending

α′ → 0 and scaling the coordinates and the parameters of the solution in such a way that

the type IIB metric scales as α′. At this point it is useful to give the form of the “electric”

charges QI in terms of the parameters of the eleven-dimensional solution:

QI = −2CIJK

N∑

j=1

k̃J
j k̃

K
j

qj
where k̃I

j = kI
j − qj

N∑

i=1

kI
i . (B.1)

The angular momenta are obtained by expanding the one-form k at infinity and one finds:

JR ≡ J1 + J2 = CIJK

N∑

j=1

k̃I
j k̃

J
j k̃

K
j

q2j
, JL = J1 − J2 = 8

∣∣∣
N∑

j=1

3∑

I=1

k̃I
j ~y

(j)
∣∣∣ , (B.2)

where the ~y(j) are the positions of the GH centers. The scaling with α′ of the coordinates

is the same as for the black hole solution

y1 ∼ y2 ∼ y3 ∼ (α′)2 , xa ∼ (α′)1/2, a = 5, 6, 7, 8 , t ∼ z ∼ ψ ∼ (α′)0 (B.3)

where we have written the four-dimensional base as a GH space (2.5).

The electric charges have also the same scaling as for the black hole:

Q1 ∼ Q2 ∼ α′, Q3 ∼ (α′)2 . (B.4)

Hence, to preserve the fact that the charges of bubbling solutions come entirely from

magnetic fluxes, the latter need to scale as

k1
j ∼ k2

j ∼ α′, k3
j ∼ (α′)0 (B.5)

In particular, we have r2 = y2
1 + y2

2 + y2
3, so r ∼ (α′)2. At infinity in the M-theory solution

the functions ZI behave like

ZI ∼ 1 +
QI

4r
+ . . . (B.6)

and so

Z1 ∼ 1

α′
Z2 ∼ 1

α′
Z3 ∼ const . (B.7)

So in the limit α′ → 0 we can ignore the constant in Z1 and Z2 but we should keep it in

Z3. It can be shown that k ∼ A3 ∼ (α′)0 which finally leads to the desired scaling

ds2IIB ∼ α′ . (B.8)
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After we have taken the α′ → 0 limit we can take the large r =
ρ2

4
limit and switch

to four-dimensional spherical polar coordinates (4.5), with radial coordinate ρ, in which

we have:

ds2IIB ∼ ρ2

√
Q1Q2

(−dt2 + dz2) +
√
Q1Q2

dρ2

ρ2
(B.9)

+
√
Q1Q2(dϑ

2 + sin2 ϑdϕ2
1 + cos2 ϑdϕ2

2) +

√
Q1

Q2
ds2T 4 (B.10)

where we have used the freedom to change A3 by pure gauge transformations. This metric

is indeed that of the product space AdS3 × S3 × T 4, where the radius of the AdS3 and

the S3 is the same and is equal to (Q1Q2)
1/4. So the bubbling solutions in the decoupling

limit are asymptotic to AdS3 × S3 × T 4 and thus should be described by the D1-D5 CFT

as expected.26

Note that the asymptotic metric in the decoupling limit of any of the BPS solutions

of section 2 is the same as the metric of the three-charge BPS black hole in the decoupling

limit. This implies that the geometries we are analyzing have a field theory description in

the same D1-D5 CFT as the three-charge black hole with identical electric charge. The

same result was found for supersymmetric black rings [15, 42].

We should also emphasize that in the decoupling limit only the three-charge black holes

and the two-charge supertubes have metrics that are everywhere locally AdS3×S3×T 4. A

general BPS solution like a black ring or a horizonless bubbling solution will have non-trivial

geometry and topology.

C The angular momentum of the supertube

Generalities. Our goal in this appendix is to compute the angular momentum of a

supertube in the background of three-charge black holes and black rings. Once again we

will work in the D0-D4-F1 duality frame:

ds2IIA = − 1

Z3

√
Z1Z2

(dt+ k)2 +
√
Z1Z2ds

2
4 +

√
Z1Z2

Z3
dz2 +

√
Z1

Z2
(dx2

5 + dx2
6 + dx2

7 + dx2
8) .

(C.1)

For the purpose of our calculations we can restrict without loss of generality to a (non-

generic) U(1) × U(1) invariant base metric of the form:

ds24 = g1(u, v)du
2 + g2(u, v)dϕ

2
1 + h1(u, v)dv

2 + h2(u, v)dϕ
2
2 , (C.2)

in which the angular momentum vector has the form

k = k1(u, v)dϕ1 + k2(u, v)dϕ2 . (C.3)

26See [70] for a discussion of a different decoupling limit in which some of these bubbling solutions become

dual to microstates of the MSW CFT [54]
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The solutions we consider also have RR and NS-NS fields, which have the general form

B = (Z−1
3 − 1)dt ∧ dz + Z−1

3 k ∧ dz −B(3) ∧ dz
C(1) = (Z−1

1 − 1)dt + Z−1
1 k −B(1) (C.4)

C(3) = Z−1
3 dt ∧ k ∧ dz − Z−1

3 (dt + k) ∧B(1) ∧ dz +B(3) ∧ dt ∧ dz − f(u, v)dϕ1 ∧ dϕ2 ∧ dz

where the self-dual harmonic two-forms are Θ(I) = dB(I), I = 1, 2, 3 and

B(I) = B(I)
ϕ1
dϕ1 +B(I)

ϕ2
dϕ2 . (C.5)

Consider a probe supertube with world-volume coordinates ξ = {ξ0, ξ1, ξ2 ≡ θ} in the

above background and suppose that the supertube is embedded as follows:

t = ξ0 , z = ξ1 , ϕ1 = ν1θ , ϕ2 = ν2θ (C.6)

where 0 ≤ θ ≤ 2πnST
2 and 0 ≤ z ≤ 2πLz . The supertube “electric” charges are:

NST
1 =

TD2

TD0

∫
dzdθFzθ = nST

2 Fzθ (C.7)

NST
3 =

1

TF1

∫
dθ

(
∂Ltot

∂Ftz

) ∣∣∣∣
BPS

=nST
2

[
Z2

(
ν2
1g2(u, v) + ν2

2h2(u, v)

Fzθ + ν1B
(3)
ϕ1 + ν2B

(3)
ϕ2

)
−
(
ν1B

(1)
ϕ1

+ ν2B
(1)
ϕ2

)]

Since the background is independent of ϕ1 and ϕ2, the supertube has two conserved angular

momenta:

JST
ϕ1

=

∫
dzdθ

∂Ltot

∂ϕ̇1
, JST

ϕ2
=

∫
dzdθ

∂Ltot

∂ϕ̇2
. (C.8)

One can compute them explicitly and find

JST
ϕ1

= nST
2

[
ν1Z2g2 −FzθB

(1)
ϕ1

− Z2B
(3)
ϕ1

(
ν2
1g2 + ν2

2h2

Fzθ + ν1B
(3)
ϕ1 + ν2B

(3)
ϕ2

)

+ν2(B
(1)
ϕ2
B(3)

ϕ1
−B(1)

ϕ1
B(3)

ϕ2
) + ν2f(u, v)

]
, (C.9)

JST
ϕ2

= nST
2

[
ν2Z2h2 −FzθB

(1)
ϕ2

− Z2B
(3)
ϕ2

(
ν2
1g2 + ν2

2h2

Fzθ + ν1B
(3)
ϕ1 + ν2B

(3)
ϕ2

)

+ν1(B
(1)
ϕ1
B(3)

ϕ2
−B(1)

ϕ2
B(3)

ϕ1
) − ν1f(u, v)

]
. (C.10)

One can also define a “total” angular momentum of the supertube, as the angular momen-

tum along the direction of the supertube

JST
TOT = ν1J

ST
ϕ1

+ ν2J
ST
ϕ2

(C.11)

and one can show that

JST
TOT = ν1J

ST
ϕ1

+ ν2J
ST
ϕ2

=
NST

1 NST
3

nST
2

. (C.12)
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Flat space. For flat space we have

ZI = 1 , B(I)
ϕ1

= B(I)
ϕ2

= 0 , k1(u, v) = k2(u, v) = 0 , f(u, v) = 0 , (C.13)

and using the change of variables u = ρ sinϑ, v = ρ cos ϑ one has:

g1(u, v) = h1(u, v) = 1 , g2 = ρ2 sin2 ϑ , h2 = ρ2 cos2 ϑ . (C.14)

The conserved “electric” charges of the supertube are

NST
1 = nST

2 Fzθ (C.15)

NST
3 = nST

2

(
ν2
1ρ

2 sin2 ϑ+ ν2
2ρ

2 cos2 ϑ

Fzθ

)
(C.16)

From these expressions one recovers the familiar radius relation of the supertube

NST
1 NST

3

(nST
2 )2

= ρ2(ν2
1 sin2 ϑ+ ν2

2 cos2 ϑ) . (C.17)

The components of the supertube angular momentum are

JST
ϕ1

= ν1n
ST
2 ρ2 sin2 ϑ , (C.18)

JST
ϕ2

= ν2n
ST
2 ρ2 cos2 ϑ . (C.19)

Of course we again have

JST
TOT = ν1J

ST
ϕ1

+ ν2J
ST
ϕ2

=
NST

1 NST
3

nST
2

. (C.20)

BMPV black hole. For a BMPV black hole we have

ZI = 1 +
QI

ρ2
, B(I)

ϕ1
= B(I)

ϕ2
= 0 , k1 =

J sin2 ϑ

ρ2
, k2 = −J cos2 ϑ

ρ2
, (C.21)

f = (Z2 − 1)ρ2 cos2 ϑ , g1(u, v) = h1(u, v) = 1 , (C.22)

g2 = ρ2 sin2 ϑ , h2 = ρ2 cos2 ϑ . (C.23)

The conserved “electric” charges of the supertube are

NST
1 = nST

2 Fzθ ,

NST
3 = nST

2

(
1 +

Q2

ρ2

)(
ν2
1ρ

2 sin2 ϑ+ ν2
2ρ

2 cos2 ϑ

Fzθ

)
. (C.24)

These again lead to a radius relation for the supertube in the background of the BMPV

black hole
NST

1 NST
3

(nST
2 )2

=

(
1 +

Q2

ρ2

)
ρ2(ν2

1 sin2 ϑ+ ν2
2 cos2 ϑ) . (C.25)

The components of the supertube angular momentum are

JST
ϕ1

= nST
2

[
ν1

(
1 +

Q2

ρ2

)
ρ2 sin2 ϑ+ ν2Q2 cos2 ϑ

]
, (C.26)

JST
ϕ2

= nST
2

[
ν2

(
1 +

Q2

ρ2

)
ρ2 cos2 ϑ− ν1Q2 cos2 ϑ

]
. (C.27)

One can compare this result to the one obtained in [44] where the special case ν1 = nST
2 = 1,

ν2 = 0 was considered. For these special values (C.26) and (C.27) are identical to (4.4)

and (4.5) in [44].
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Three-charge BPS black ring. For a three-charge BPS black ring we have:

g1 =
R2

(x− y)2(y2 − 1)
, g2 =

R2(y2 − 1)

(x− y)2
, h1 =

R2

(x− y)2(1 − x2)
, h2 =

R2(1 − x2)

(x− y)2
.

(C.28)

The functions, ZI , appearing in the ten-dimensional metric, the one-forms B(I) and the

function f(x, y) are given by (4.25), (4.27) and (4.29) respectively. The explicit form of the

angular momentum components of the black ring, k1(x, y) and k2(x, y), is not needed here.

The conserved “electric” charges of the supertube are

NST
1 = nST

2 Fzθ , (C.29)

NST
3 = nST

2

[
n1

2
(−ν1(d+ y) + ν2(c+ x))

+
Z2

Fzθ + n3
2 (−ν2(c+ x) + ν1(d+ y))

(
ν2
1R

2 (y2 − 1)

(x− y)2
+ ν2

2R
2 (1 − x2)

(x− y)2

)]
, (C.30)

which leads to the radius relation
[
NST

1 +
1

2
nST

2 n3(ν1(y + d) − ν2(x+ c))

][
NST

3 +
1

2
nST

2 n1(ν1(y + d) − ν2(x+ c))

]
=

(nST
2 )2Z2

R2

(x− y)2
(ν2

1 (y2 − 1) + ν2
2(1 − x2)) (C.31)

The components of the supertube angular momentum are

JST
ϕ1

= nST
2

[
−Fzθ

n1

2
(d+ y) + ν1Z2R

2 (y2 − 1)

(x− y)2
+ ν2f(x, y)

− Z2
n3(d+ y)

2

( ν2
1R

2 (y2−1)
(x−y)2 + ν2

2R
2 (1−x2)

(x−y)2

Fzθ + n3
2 (−ν2(c+ x) + ν1(d+ y))

)]
(C.32)

JST
ϕ2

= nST
2

[
Fzθ

n1

2
(c+ x) + ν2Z2R

2 (1 − x2)

(x− y)2
− ν1f(x, y)

+ Z2
n3(c+ x)

2

( ν2
1R

2 (y2−1)
(x−y)2 + ν2

2R
2 (1−x2)

(x−y)2

Fzθ + n3
2 (−ν2(c+ x) + ν1(d+ y))

)]
(C.33)

And we again have

JST
TOT = ν1J

ST
ϕ1

+ ν2J
ST
ϕ2

=
NST

1 NST
3

nST
2

. (C.34)

D Units and conventions

Here we summarize some of the conventions we use in this paper (see [68, 71] for

more details).

The tensions of the extended objects in string and M-theory are:

TF1 =
1

2πα′
, TDp =

1

gs(2π)p(ls)p+1
, TNS5 =

1

g2
s(2π)5(ls)6

, (D.1)

TM2 =
1

(2π)2(l11)3
, TM5 =

1

(2π)5(l11)6
(D.2)
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where α′ = l2s , ls is the string length, gs is the string coupling constant (in the particu-

lar duality frame in which one works) and lD is the D-dimensional Planck length. The

Newton’s constant in different dimensions is

16πG11 = (2π)8(l11)
9 , 16πG10 = (2π)7(gs)

2(ls)
8 , 16πGD = (2π)D−3(lD)D−2 .

(D.3)

One can show that

l11 = g1/3
s ls = g1/3

s (α′)1/2 . (D.4)

T-duality along a circle of radius R changes the coupling constants to:

R̃ =
α′

R
, g̃s =

ls
R
gs , l̃s = ls . (D.5)

where R̃ is the radius after T-duality:

When one compactifies M-theory on a circle of radius L9, the coupling constants of

the resulting type IIA string theory satisfy:

L9 = gsls . (D.6)

If one compactifies M-theory on a T 6 (along the directions 5, 6, 7, 8, 9, 10) and the

radius of each circle is Li (i = {5, 6, 7, 8, 9, 10}), the five-dimensional Newton’s constant is

G5 =
G11

vol(T 6)
=

G11

(2π)6L5L6L7L8L9L10
=
π

4

(l11)
9

L5L6L7L8L9L10
. (D.7)

The relations between the number of M2 and M5 branes, NI and nI , and the physical

charges of the five-dimensional solution obtained by compactifying M-theory on a T 6, QI

and qI , are

Q1 =
(l11)

6

L7L8L9L10
N1 , Q2 =

(l11)
6

L5L6L9L10
N2 , Q3 =

(l11)
6

L5L6L7L8
N3 , (D.8)

q1 =
(l11)

3

L5L6
n1 , q2 =

(l11)
3

L7L8
n2 , q3 =

(l11)
3

L9L10
n3 . (D.9)

We will choose a system of units in which all three T 2 are of equal volume

L5L6 = L7L8 = L9L10 = (l11)
3 ≡ gsl

3
s , (D.10)

note that this is a numerical identity and is not dimensionally correct since gs is dimen-

sionless. With this choice we will have

G5 =
π

4
, QI = NI , qI = nI . (D.11)

and these identities hold in every duality frame we use in the paper. Furthermore we

will choose

gsls = 1 . (D.12)

– 53 –



J
H
E
P
0
7
(
2
0
0
9
)
1
0
6

Since we are compactifying M-theory on L9 we will have L9 = gsls = 1 and L10 = l2s , this

implies (note that throughout the paper we put L10 ≡ Lz)

TD0 = 1 , 2πTF1L10 = 1 , and
2πTD2

TF1
= 1 . (D.13)

We have fixed ls = g−1
s so that a lot of the various brane tension factors, appearing in the

probe supertube calculations throughout the paper, cancel. Note that with our choices gs

is still a free parameter but we have fixed the volume of the compactification torii.
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